Submission of the manuscript is online via e-mail
ecgarticle@gmail.com or
cholerez@mail.ru

Tel: +7 903 250 5288

Editorial Correspondence e-mail
gastrossr@gmail.com


Publishing, Subscriptions, Sales and Advertising, Correspondence e-mail
journal@cniig.ru

Tel: +7 917 561 9505

SCImago Journal & Country Rank

    1. Federal research center of epidemiology and Microbiology them. N.F. Gamalei (Moscow, Russian Federation)
    2. Russian Medical Academy оf Continuing Professional Education (Moscow, Russian Federation)
    3. First MSMU n. a. I.M. Sechenov (Moscow, Russian Federation)

    Keywords: H.pylori , intestinal-brain axis, visceral sensitivity, cytokines

    Abstract: A complex combination of external factors (stress), host immune status and virulence factors determines the susceptibility and severity of the outcome of H. pneumonia infection and associated pathology. H.pylori and intestinal-brain axis relationships are bi-directional and affect the infection process and neuroendocrine immunological response of the host organism, including changes in secretory and motor functions of the digestive tract, modification of visceral sensitivity and cognitive functions. The effect of H.pylori on intestinal-brain axis is based on direct neurotoxic action, micronutrient deficiency, the activation of inflammatory processes in the epithelium, destruction of the barrier function, destabilization of the blood-brain barrier and the systemic action of pro-inflammatory cytokines.

      1. Bondarenko V.M., Ryabichenko E.V. Rol' nespetsificheskoi infektsii v razvitii ostroi i khronicheskoi vospalitel'noi patologii nervnoi sistemy. Epidemiologiya i infektsionnye bolezni. 2011;4:8–14.
      2. Bondarenko V.M., Ryabichenko E.V. Perspektivy patogeneticheskoi terapii pri patologii kishechno-mozgovoi osi. Verkhnevolzhskii meditsinskii zhurnal. 2016;15(1):17–23.
      3. Bercik P., Verdu E.F., Foster J.A., Lu J., Scharringa A., Kean I., Wang L., Blennerhassett P., Collins M.S. Role of gut-brain axis in persistent abnormal feeding behavior in mice following eradication of Helicobacter pylori infection. Am J Physiol Regul Integr Comp Physiol. 2009;296:R587–R594.
      4. Brzozowski T., Konturek S.J. Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options. J Physiol Pharmacol. 2011;62:591–599.
      5. Budzyński J., Kłopocka M. Brain-gut axis in the pathogenesis of Helicobacter pylori infection. World J Gastroenterol. 2014;20(18):5212–5225.
      6. Burns M., Muthupalani S., Ge Z., Wang T.C., Bakthavatchalu V., Cunningham C., Ennis K., Georgieff M., Fox J.G. Helicobacter pylori Infection Induces Anemia, Depletes Serum Iron Storage, and Alters Local Iron-Related and Adult Brain Gene Expression in Male INS-GAS Mice. PLoS One. 2015;10(11);1371–1392.
      7. Carabotti M., Scirocco A., Maselli M.A., et al. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203–209.
      8. Chung-Che Tsai, Ting-Yu Kuo,† Zhi-Wei Hong,† Ying-Chieh Yeh. Helicobacter pylori neutrophil-activating protein induces release of histamine and interleukin-6 through G protein-mediated MAPKs and PI3K/Akt pathways in HMC-1 cells. Virulence. 2015;6(8):755–765.
      9. Ernst P.B., Gold B.D. The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu. Rev. Microbiol. 2000;54:615–640.
      10. Jones M.P. The role of psychosocial factors in peptic ulcer disease: beyond Helicobacter pylori and NSAIDs. J Psychosom Res. 2006;60:407–412.
      11. Katoh K., Nomura M., Nakaya Y., Iga A., Nada T., Hiasa A., Ochi Y., Kawaguchi R., Uemura N., Honda H., Shimizu I., Ito S. Autonomic nervous activity before and after eradication of Helicobacter pylori in patients with chronic duodenal ulcer. Aliment Pharmacol Ther. 2002;16(Suppl 2):180–186.
      12. Konturek P.C., Brzozowski T., Konturek S.J. Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options. J Physiol Pharmacol. 2011;62:591–599.
      13. Kountouras J., Zavos C., Stergios A., Polyzos S.A. et al. The gut-brain axis: interactions between Helicobacter pylori and enteric and central nervous systems. Annals Gastroenterology. 2015;28:506–510.
      14. Masuda Y., Tanaka T., Inomata N. et al. Ghrelin stimulates gastric acid secretion and motility in rats. Biochem Biophys Res Commun. 2000;276:905–908.
      15. Meng W.P., Wang Z.Q., Deng J.Q., Liu Y., Deng M.M.,1 and Lü M.H. The Role of H. pylori CagA in Regulating Hormones of Functional Dyspepsia Patients. Gastroenterol Res Pract. 2016;2016:959–968.
      16. Sharkey K.A., Savidge T.C. Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci. 2014;181:94–106.
      17. Suzuki H., Matsuzaki J., Hibi T. Ghrelin and oxidative stress in gastrointestinal tract. J Clin Biochem Nutr. 2011;48:122–125.
      18. van Vliet A.H., Stoof J., Poppelaars S.W., et al. Differential Regulation of Amidase- and Formamidase-mediated Ammonia Production by the Helicobacter pylori Fur Repressor. J Biol Chem. 2003;278(11):9052–9057.
      19. Zhou H., Liang H., Li Z.F., Xiang H., Liu W., Li J.G. Vagus nerve stimulation attenuates intestinal epithelial tight junctions disruption in endotoxemic mice through alpha7 nicotinic acetylcholine receptors. Shock. 2013;40:144–151.


    Full text is published :
    Ryabichenko E.V., Burgasov O.A. , Zhukhovitskii V.G. THE ROLE OF INTESTINAL BRAIN AXIS IN THE PATHOGENESIS OF DISEASES ASSOCIATED WITH . Experimental and Clinical Gastroenterology Journal. 2017;148(12):4-8
    Read & Download full text