Submission of the manuscript is online via e-mail
ecgarticle@gmail.com or
cholerez@mail.ru

Tel: +7 903 250 5288

Editorial Correspondence e-mail
gastrossr@gmail.com


Publishing, Subscriptions, Sales and Advertising, Correspondence e-mail
journal@cniig.ru

Tel: +7 917 561 9505

SCImago Journal & Country Rank

    1. Centre for Strategic Planning and Management of Biomedical Health Risks, 119992, Moscow, Russia
    2. L. M. Sechenov First Moscow State Medical University, 119991, Moscow, Russia

    Keywords: infl ammation bowel disease, aetiopathogenesis, commensal gut microbiota, Akkermansia muciniphila, dysfunction of local immune responses, intestinal infl ammation, probiotics, metabiotics, FMT, clinical application in IBD

    Abstract:Infl ammatory bowel disease (IBD) has increasing socio-medical and economic signifi cance for humans. Although the aetiopathogenesis of IBD is not fully established, it is believed that the imbalance of intestinal microbiota of the gastrointestinal tract and modifi cation of the intestinal immune system are the most important triggering mechanisms of risk, development and progression of IBD, their relapses and activation. Epidemiological, microbiological and immunological studies have identifi ed some pathogenic and commensal intestinal bacteria that can induce disturbances of local immune responses and predispose the risk of IBD. The review deals with the mechanism of participation of commensal intestinal anaerobic gram-negative Akkermansia muciniphila in the destruction and metabolism of the intestinal mucosa and modulation of epigenetic mechanisms, physiological, metabolic, immune and signal functions associated with the development of IBD. The use and limitations of these living bacterial commensals and their low molecular weight components and metabolites in the prevention and treatment of IBD are discussed. Challenges, limitations and potential improvement strategies using some commensal anaerobic bacteria and fecal microbiota transplantation in IBD are also considered.

      1. Ahluwalia B, Moraes L, Magnusson MK, Ohman L. Immunopathogenesis of infl ammatory bowel disease and mechanisms of biological therapies. Scandin J Gastroenterol 2018; 53(4): 379–389
      2. Kaplan GG. Th e global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol 2015; 12(12): 720–727.
      3. Proal AD, Lindseth IA, Marshall TG. Microbe-microbe and host-microbe interactions drive microbiome dysbiosis and infl ammatory processes. Discov Med 2017; 23(124): 51–60
      4. Grigg JB, Sonnenberg GF. Host-Microbiota Interactions Shape Local and Systemic Infl ammatory Diseases. J Immunol 2017; 198(2): 564–571 https://doi.org/10.4049/ jimmunol.160621
      5. Forbes JD, Van Domselaar G, Bernstein CN. Th e Gut Microbiota in Immune-Mediated Infl ammatory Diseases. Front. Microbiol 2016; 7: 1081. Doi; 10.3389/fmicb.2016.01081
      6. Hur SJ, Kang SH, Jung HS, Kim SC, Jeon HS, Kim IH, Lee JD. Review of natural products actions on cytokines in infl ammatory bowel disease. Nutr Res 2012; 32: 801–816
      7. Hold GL, Smith M, Grange C, Watt ER, El-Omar EM, Mukhopadhya I. Role of the gut microbiota in infl ammatory bowel disease pathogenesis: What have we learnt in the past 10 years? World J Gastroenterol 2014; 20(5): 1192–1210
      8. Tedjo DI, Smolinska A, Savelkoul PH, Masclee AA, Schooten FJ, Pierik MJ, et al. Th e fecal microbiota as a biomarker for disease activity in Crohn’s disease. Scientifi c Reports 2016; 6:35216. Doi: 10.1038/strep35216
      9. Shen ZH, Zhu CX, Quan YS, Yang ZY, Wu S, Luo WW, et al. Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J Gastroenterol 2018; 24(1): 5–14
      10. Mijan MA, Lim BO. Diets, functional foods, and nutraceuticals as alternative therapies for infl ammatory bowel disease: Present status and future trends. World J Gastroenterol 2018; 24(25): 2673–2685
      11. Hedin CR, van der Gast CJ, Stagg AJ, Lindsay JO, Whelan K. Th e gut microbiota of siblings off ers insights into microbial pathogenesis of infl ammatory bowel disease. GUT MICROBES2017; 8(4): 359–365
      12. Moustafa A, Li W, Anderson EL, Wong EHM, Dulai PS, Sandborn WJ, et al. Genetic risk, dysbiosis, and treatment stratifi cation using host genome and gut microbiome in infl ammatory bowel disease. Clin Transl Gastroenterol 2018; 9(1): e132 doi: 10.1038/ctg.2017.58.
      13. Seregin SS, Natasha Golovchenko N, Schaf B, Chen J, Pudlo NA, Mitchell J et al. NLRP6 protects IL10–/– mice from colitis by limiting colonization of Akkermansia muciniphila. Cell Rep. 2017; 19(4): 733–745.
      14. Shi N, Li N, Duan X, Niu H. Interaction between the gut microbiome and mucosal immune system. Military Med. Res. 2017. 4:14. doi: 10.1186/s40779–017–0122–9
      15. Tailford LE, Crost EH, Kavanaugh D, Juge N. Mucin glycan foraging in the human gut microbiome. Front. Genet.2015; 6:81. doi: 10.3389/fgene.2015.00081
      16. Bansil R, Turner DS. Th e biology of mucus: Composition, synthesis and organization. Advanced Drug Delivery Reviews 2018; 124: 3–15
      17. Hooper LV, Littman DR, Macpherson AJ. Interaction between the microbiota and the immune system. Science 2012; 336: 1268–1273
      18. Selber-Hnativ S, Rukundo B, Ahmadi M, Akoubi H, Al-Bizri H, Aliu AF et al. Human Gut Microbiota: Towards an Ecology of Disease. Front Microb 2017. 17 July. Doi:10.3389/ fmicb.2017.01265
      19. Lemire P, Robertson SJ, Maughan H, Tattoli I, Streutker CJ, Platnich JM et al. Th e NLR Protein HLP6 Does not impact gut microbiota composition. Cell Reports 2017; 21:3653–3661
      20. Li N, Shi R-H. Updated review on immune factors in pathogenesis of Crohn’s disease. World J Gastroenerol 2018; 24(1): 15–22
      21. Kamada N, Nunez G. Regulation of the immune system by the resident intestinal bacteria. Gastroenterology 2014; 146(6): 1477–1488
      22. Hornef M. Pathogens, commensal symbionts, and pathobionts: discovery and functional eff ects on the host. Ilar J 2015; 56(2):159–162,
      23. Voreades N, Kozil A, Weir T L. Diet and the development of the human intestinal microbiome. Front. Microbiol. 2014; 5:494. doi: 10.3389/fmicb.2014.00494
      24. Filyk HA, Osborne LC. Th e multibiome: Th e Intestinal Ecosystem’s Infl uence on Immune Homeostasis, Health, and Diseases. EBioMedicine 2016; 13: 46–54
      25. Shenderov BA. Human microbial ecology and its role in health supporting. Metamorphoses 2014; N5: 72–80. (in Russian)
      26. Sonnenberg A, Genta RM. Low prevalence of Helicobacter pylori infection among patients with infl ammatory bowel disease. Aliment Pharmacol Th er 2012; 35: 469–476
      27. Shenderov BA, Midtvedt T. Epigenomic programing: a future way to health? Microbial ecology in Health & Disease 2014, 25: 24145–http://dx.doi.org/10.3402/mehd. v25.24145
      28. Shenderov BA. Th e role of nutrition and symbiotic microbiota in epigenetics of chronic somatic disorders. Voprosi dietologii, 2015, 5, № 1: 22–23 (in Russian)
      29. Shenderov BA. Th e role of nutrition and symbiotic microbiota in epigenetics of chronic somatic disorders. Voprosi dietologii, 2015, 5, № 1: 22–23 (in Russian)
      30. Devaux CA, Raoult D. Th e microbiological Memory, an Epigenetic Regulator Governing the balance between good health and metaboplic disorders. Front Microbiol 2018; 9;1379. Doi;10.3389/fmicb.2018.01379
      31. Spehlmann ME, Begun AZ, Burghardt J, Lepage P, Raedler A, Schreiber S. Epidemiology of infl ammatory bowel disease in a german twin cohort: results of a nationwide study. Infl amm Bowel Dis. 2008;14: 968–976
      32. Bernstein CN, Forbes JD. Gut microbiome inn infl ammatory bowel disease and other chronic immune-mediated infl ammatory diseases. Infl am Intest Dis 2017; 2(2): 116–123
      33. Ma H-Q, Yu T-T, Zhao X-J, Zhang Yi, Zhang H-J. Fecal microbial dysbiosis in Chinese patients with infl ammatory bowel disease 2018; 24(13): 1464–1477
      34. Park JH, Peyrin-Biroulet L, Eisenhut M, Shin J I. IBD immunopathogenesis: a comprehensive review of inflammatory molecules. Autoimmun. Rev. 2017; 16: 416–426
      35. Rajilic-Stojanovic M, Shanahan F, Guarner F, de Vos WM. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Infl amm Bowel Dis. 2013; 19(3): 481–488.
      36. Actis GC, Pellicano R. Th e pathologic galaxy modulating the genotype and phenotype of infl ammatory bowel disease: comorbidity, contiguity, and genetic and epigenetic factors. Minerva Med 2016; 107: 401–412
      37. Alipour M, Zaidi D, Valcheva R, Jovel J, Martínez I, Sergi C et al. Mucosal Barrier Depletion and Loss of Bacterial Diversity are Primary Abnormalities in Paediatric Ulcerative Colitis. J Crohns Colitis 2016; 10: 462–471
      38. Griffi n NW, Ahern PP, Cheng J, Heath A C, Ilkayeva O, Newgard C B, et al. Prior dietary practises and connections to a human gut microbial metacomminity alter responses to diet interventions. Host Microbe 2017; 21: 84–96.
      39. Barroso-Batista J, Sousa A, Lourenço M, Bergman M L, Sobra D, Demengeo J et al. Th e first steps of adaptation of Escherichia coli to the gut are dominated by soft sweeps. PLoS Genet. 2014 10: e1004182. doi: 10.1371/journal. pgen.1004182
      40. Hormannsperger G, Haller D. Molecular crosstalk of probiotic bacteria with the intestinal immune system: clinical relevance in the context of infl ammatory bowel disease. Int J Med Microbiol 2010; 300: 63–73.
      41. Vigsnaes LK, Brynskov J, Steenholdt C, Wilcks A, Licht TR. Gram-negative bacteria account for main differences between faecal microbiota from patients with ulcerative colitis and healthy controls. Benefi cial microbes. 2012; 3(4): 287–297
      42. Martin R., Miqquel S, Ulmer J, Kechaou N, Langella P, Bermúdez-Humarán LG. Role of commensal and probiotic bacteria in human health: a focus on infl ammatory bowel disease. Microbial Cell Factories 2013, 12:71 http://www.microbialcellfactories.com/content/12/1/71
      43. Sartor RB, Wu GD. Roles for intestinal bacteria, viruses, and fungi in pathogenesis of infl ammatory bowel diseases and therapeutic approaches. Gastroenterology 2017;152(2): 327–339.
      44. Mcllroy J, Ianiro G, Mukhopadhya I, Hansen R, Hold GL. Review article: the gut microbiome in infl ammatory bowel disease-avenues for microbial management. Aliment Pharmacol Th er 2018; 47: 26–42
      45. Cani PD. Human gut microbiome: hopes, threats and promises. Gut 2018; 1–10. Doi:10.1136/gutjnl-2018–316723
      46. Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2016 Jan;14(1): 20–32.
      47. Ottman N, Reunanen J, Meijerink M, Pietilä TE, Kainulainen V, Klievink J et al. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS One 2017a;12: e0173004. Doi; 10.1371/ journal.pone.0173004
      48. Derrien M, Belzer C, de Vos WM. Akkermansia muciniphila and its role in regulating host functions. Microbial Pathogenesis 2016.http://dx.doi.org/10.1016/j.micpath.2016.02.005
      49. Derrien M, Van Baarlen P, Hooiveld G, Norin E, Muller M, de Vos WM. Modulation of mucosal immune response, tolerantce, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front Microbiol 2011; 2: 166. Doi: 10.3389/fmicb.2011.00166
      50. Png CW, Linden SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010; 105(11): 2420–2428
      51. Plovier H, Everard A, Druart C, Depommier C, Van Matthias H, Geurts L et al. A purifi ed membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Med 2017; 23: 107–113
      52. Burokas A, Arboleya S, Moloney RD, Peterson VL, Murphy K, Clarke G, et al. Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Eff ects and Reverse the Impact of Chronic Stress in Mice, Biol Psychiatry. 2017/DOI:10.1016/j.biopsych.2016.12.031
      53. Wu W., Lv L, Ye J, Fang D, Guo F, Li Y et al. Protective Eff ect of Akkermkansia muciniphila against Immune-mediated Liver Injury in a Mouse Model. Front. Microbiol 2017; 8: 1804 doi:10.3389/fmicb.2017.01804
      54. Shah R, Cope JL, Nagy-Szakal D, Dowd S, Versalovic J, Hollister EB, Kellermayer R. Composition and function of the pediatric colonic mucosal microbiome in untreated patients with ulcerative colitis, Gut Microbes 2016; 7 (5): 384–396
      55. Bajer L, Kverka M, Kostovcik M, Macinga P, Dvorak J, Stehlikova Z et al. Distinct gut microbiota profi les in patients with primary sclerosing cholangitis and ulcerative colitis. World J Gastroenterol 2017; 23: 4548–4558
      56. Shang Q, Sun W, Shan X, Jiang H, Cai C, Hao J et al. Carrageenan-induced colitis is associated with decreased population of anti-infl ammatory bacterium, Akkermansia muciniphila, in the gut microbiota of C57BL/6J mice. Toxicol Lett 2017; 279: 87–95
      57. Cani PD, de Vos WM. 2017. Next-Generation Benefi cial Microbes: Th e Case of Akkermansia muciniphila. Frontiers in Microbiology, 8, 1765. http://journal.frontiersin.org/ article/10.3389/fmicb.2017.01765/full
      58. Tan L, Zhao S, Zhu W, Wu L, Li J, Shen M. et al, Th e Akkermansia muciniphila is a gut microbiota signature in psoriasis. Exp Dermatol. 2018; 27(2):144–149.
      59. Angriman I, Scarpa M, Castagliuolo I. Relationship between pouch microbiota and pouchitis following restorative proctocolectomy for ulcerative colitis. World J Gastroenterol 2014; 20(29): 9665–9674
      60. Zhang YJ, Li S, Gan RY, Zhou T, Xu DP, Li HB. Impacts of gut bacteria on human health and diseases. Int J Mol Sci 2015; 16: 7493–7519
      61. Ganesh BP, Klopfl eisch R, Loh G, Blaut M. Commensal Akkermansia muciniphila exacerbates gut infl ammation in Salmonella typhimurium-infected gnotobiotic mice. PLoS One. 2013; 8: e74963.
      62. Baxter NT, Zackular JP, Chen GY, Schloss PD. Structure of the gut microbiome following colonization with human feces determines colonic tumor burden. Microbiome 2014 Jun 17; 2:20. doi: 10.1186/2049–2618–2–20. eCollection.
      63. Wopereis H, Oozeer R, Knipping K, Belzer C, Knol J. Th e first thousand days – intestinal microbiology of early life: establishing a symbiosis. Pediatr Allergy Immunol 2014: 25: 428–438
      64. Mithieux G. Does Akkermansia muciniphila play a role in type 1 diabetes? Gut 2018: gutjnl-2017–315732
      65. Mendes MC, Paulino DSM, Brambilla SA, Camargo JA, Persinoti GF, Carvalheira JBC. Microbiota modifi cation by probiotic supplementation reduces colitis associated colon cancer in mice. World J Castroenterol 2018; 24(28): 1995–2008
      66. Rossen NG, Fuentes S, van der Spek MJ, Tijssen JG, Hartman JH, Duflou A et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 2015; 149: 110–118.
      67. Cao Y, Zhang B, Wu Y Wang O, Wang J, Shen F. Th e Value of Fecal Microbiota Transplantation in the Treatment of Ulcerative Colitis Patients: A Systematic Review and Meta-Analysis. Gastroenterology Research and Practice 2018; Article ID480961 https://doi.org/10.1155/2018/5480961
      68. Khalili H, Chan SSM, Lochhead P, Ananthakrishnan AN, Hart AR, Chan A. Th e role of diet in the aetiopathogenesis of infl ammatory bowel diaease. Nat Rev Gastroenterol Hepatol 2018; 15: 525–535
      69. Duff W, Haskey N, Potter G, Alcorn J, Hunter P, Fowler S. Non-pharmacological therapies for infl ammatory bowel disease: Recommendations for self-care and physician guidance. World J Gastroenterol 2018; 24(28): 3055–3070
     


    Full text is published :
    Shenderov B. A., Yudin S. M., Zagaynova A. V., Shevyreva M. P. The role of commensal gut bacteria in the aetiopathogenesis of infl ammatory bowel disease: Akkermansia muciniphila. Experimental and Clinical Gastroenterology. 2018;159(11): 4–13. (In Russ.) DOI: 10.31146/1682-8658-ecg-159-11-4-13
    Read & Download full text