Submission of the manuscript is online via e-mail
ecgarticle@gmail.com or
cholerez@mail.ru

Tel: +7 903 250 5288

Editorial Correspondence e-mail
gastrossr@gmail.com


Publishing, Subscriptions, Sales and Advertising, Correspondence e-mail
journal@cniig.ru

Tel: +7 917 561 9505

SCImago Journal & Country Rank

    1. Central state medical Academy” of Department for presidential Affairs of RF (Moscow, Russian Federation)

    Keywords:cardiovascular disease,antiplatelet agents,prevention of gastrointestinal bleeding

    Abstract: It is well known that in the structure of total mortality in Russia more than 57 % are cardiovascular disease (CVD). From the point of view of pathophysiology the basis of premature cardiovascular death in almost half the cases lies with atherothrombosis: the situation when the tyre is destroyed atherosclerotic plaque is formed thrombus, covering partially or totally the lumen of the vessel, and depending on the location of the lesion, the patient develops a myocardial infarction, ischemic atherothrombotic stroke, or gangrene of the lower extremities. Since the completion of the famous Framingham study, the notion of “risk factor” and therefore the concept of secondary and primary prevention of CVD. Among the drugs that have the ability to reduce CVD risk include antiplatelet agents and statins. It was during the administration of these drugs in some cases can cause serious problems.

      1. Francis K. L. et. al. Clopidogrel versus Aspirin and Esomeprazole to Prevent Recurrent Ulcer Bleeding. N Engl J Med. 2005; 352:238-44.
      2. Kreutz RP, Stanek EJ, Aubert R et al. Impact of proton pump inhibitors on the effectiveness of clopidogrel after coronary stent placement: the clopidogrel Medco outcomes study. Pharmacotherapy. 2010 Aug;30(8):787-796.
      3. Бордин Д. С. Что следует учитывать при выборе ингибитора протонной помпы больному ГЭРБ? // Медицинский альманах. 2010. № 1(10) март. - С. 127-130.
      4. Angiolillo DJ, Gibson CM, Cheng S et al. Differential effects of omeprazole and pantoprazole on the pharmacodynamics and pharmacokinetics of clopidogrel in healthy subjects: randomized, placebo-controlled, crossover comparison studies. Clin Pharmacol Ther. 2011 Jan;89(1):65-74.
      5. Национальные рекомендации по антитромботической терапии у больных со стабильными проявлениями атеротромбоза. Кардиоваскулярная терапия и профилактика. 2009; 8(6), Приложение 6.
      6. Braunwald E, Antman EM, Beasley JW et al. ACC/AHA guideline update for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction-2002: Summary article: A report of the American College of Cardiology. American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Unstable Angina). Circulation. 2002; 106: 1893-1900.
      7. Angiolillo DJ, Gibson CM, Cheng S et al. Differential effects of omeprazole and pantoprazole on the pharmacodynamics and pharmacokinetics of clopidogrel in healthy subjects: randomized, placebo-controlled, crossover comparison studies. Clin Pharmacol Ther. 2011 Jan;89(1):65-74.
      8. Ferreiro JL, Ueno M, Tomasello SD et al. Pharmacodynamic evaluation of pantoprazole therapy on clopidogrel effects: results of a prospective, randomized, crossover study. Circ Cardiovasc Interv. 2011 Jun;4(3):273-279.
      9. Braunwald E, Antman EM, Beasley JW et al. ACC/AHA guideline update for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction-2002: Summary article: A report of the American College of Cardiology. American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Unstable Angina). Circulation. 2002; 106: 1893-1900.
      10. Angiolillo DJ, Gibson CM, Cheng S et al. Differential effects of omeprazole and pantoprazole on the pharmacodynamics and pharmacokinetics of clopidogrel in healthy subjects: randomized, placebo-controlled, crossover comparison studies. Clin Pharmacol Ther. 2011 Jan; 89(1):65-74.
      11. Fujimori S., Takahashi Y., Gudis K. Rebamipide has the potential to reduce the intensity of NSAID-induced small intestinal injury: a dou ble-blind, randomized, controlled trial evaluated by capsule endoscopy. J. Gastroenterol. 2011; 46 (1): 57-64.
      12. Tozawa K., Oshima T., Okugawa T. et al. Does Rebamipide Prevent Gastric Mucosal Injury in Patients Taking Aspirin and Clopidogrel? Dig. Dis. Sci. 2014. 59: 1671-1673.
      13. Naito Y, Yoshikawa T. Rebamipide: a gastrointestinal protective drug with pleiotropic activities. Expert Rev Gastroenterol Hepatol. 2010; 4 (3): 261-270.
      14. Mizukami K., Murakami K., Abe T. et al. Aspirin-induced small bowel injuries and the preventive effect of rebamipide. World. J. Gastroenterol. 2011; 17 (46): 5117-5122.
      15. Fujimori S., Takahashi Y., Gudis K. Rebamipide has the potential to reduce the intensity of NSAID-induced small intestinal injury: a dou ble-blind, randomized, controlled trial evaluated by capsule endoscopy. J. Gastroenterol. 2011; 46 (1): 57-64.
      16. Mitsuki Miyata, Toshihiro Konagaya, Shiniti Kakumu, Takeshi Mori. Successful treatment of severe pouchitis with rebamipide refractory to antibiotics and corticosteroids: A case report. World J Gastroenterol. 2006; 12 (4): 656-658.
      17. Maron DJ, Fazio S., Linton MF. Современные перспективы применения статинов. Международный Медицинский Журнал. - 2000 год. - № 6.
      18. Корнеева О. Н., Драпкина О. М., Буеверов А. О., Ивашкин В. Т. Неалкогольная жировая болезнь печени как проявление метаболического синдрома. Клинические перспективы гастроэнтерологии, гепатологии. 2005. № 4.
      19. Ивашкин В. Т., Драпкина О. М., Шульпекова Ю. О. Диагностика и лечение неалкогольной жировой болезни печени. Рос. мед. вести. 2009. Т. XIV. № 3.
      20. Драпкина О. М., Смирин В. И., Ивашкин В. Т. Неалкогольная жировая болезнь печени - современный взгляд на проблему. Лечащий врач. 2010. № 5.
      21. Dima A., Marinescu A. G., Dima A. C. Non-alcoholic Fatty Liver Disease and the Statins Treatment. Rom. J. Intern. Med. 2012. Vol. 50, 1. P. 19-25.
      22. Kivici M, Gulten M, Gurel S, Nak SG, Dolar E, Savci G, et al. Ursodeoxycholic acid and atorvastatin in the treatment of nonalcoholic steatohepatitis. Can J Gastroenterol. 2003,17:13-18.
      23. Chalasani N., Aljadhey H., Kesterson J. Patients with elevated liver enzymes are not at higher risk for statin hepatotoxicity. Gastroenterology. 2004;126:1287-1292.
      24. Athyros V. G., Tziomalos K., Gossios T. D. et al. Safety and efficacy of long-term statin treatment for cardiovascular events in patients with coronary heart disease and abnormal liver tests in the Greek Atorvastatin and Coronary Heart Disease Evaluation (GREACE) Study: a post-hoc analysis // Lancet. 2010. Vol. 376. P. 1916-1922.
      25. Драпкина О. М., Дуболазова Ю. В. Статины и печень: тупик или новые горизонты? РМЖ. Человек и лекарство. 2009. № 4.
      26. Argo C. K., Loria P., Caldwell S. H., Lonardo A. Statins in liver disease: a molehill, an iceberg, or neither? Hepatology. 2008 Aug;48(2):662-669.
      27. Habeos I. G., Ziros P. G., Chartoumpekis D. et al. Simvastatin activates Keap1/Nrf2 signaling in rat liver. J Mol Med. 2008 Sep 2. [Epub ahead of print].
      28. Dongiovanni P., Petta S., Mannisto V. et al. Statin use and non-alcoholic steatohepatitis in at risk individuals. J Hepatol. 2015; 63: 705-712.
      29. Драпкина О. М., Фадеева М. В. Статины и печень. Коротко о главном. РМЖ, 2014, № 6. С. 428.
      30. Напалков Д. А. Безопасность статинов: что нужно знать практикующему врачу? Рациональная Фармакотерапия в Кардиологии 2014;10(3) 331-335.
      31. Gastroenterology: manual / ed. by F. I. Komarov, S. I. Rapoport. - M.: Medical informational agency, 2010. 864.
      32. Довженко, Л. И. Пациент с ишемической болезнью сердца и хроническим стеатогепатитом: как проводить гиполипидемическую терапию. Укр. мед. часопис. - 2007. -№ 1. - С. 1-4.
      33. Диагностика и лечение диффузных заболеваний печени / под ред. В. Т. Ивашкина, Н. Д. Ющука. - М., 2003. - 22 с.
      34. Рекомендации экспертов Всероссийского научного общества кардиологов по диагностике и лечению метаболического синдрома / под ред. И. Е. Чазовой. - М., 2009. - 32 с.
     


    Full text is published :
    Baryshnikova G.A., Chorbinskaya S.A., Kudryavtseva N.A. PREVENTION OF GASTROINTESTINAL COMPLICATIONS IN THE TREATMENT OF PATIENTS WITH CARDIAC PROFILE. Experimental and Clinical Gastroenterology Journal. 2017;142(06):120-125
    Read & Download full text

    1. Scientific research clinical pediatrician institute by Y. Veltishev (Moscow, Russian Federation)

    Keywords:microbiota,dysbacteriosis (dysbiosis),mucin layer,mucous membrane,short chain fatty acids (SCFA),probiotic

    Abstract: Saccharomyces boulardii CNCM I-745 (Saccharomyces cerevisiae HANSEN CBS 5926) - strain of yeast, used widely in clinical evidence as probiotic. It’s positive effect of immune system, pathogenic agents adsorption and toxins blocking, influence on digestive ferments had proved. As a result S. boulardii allow for microbiota development, provides mucosa caring. Additional, Saccharomyces boulardii action brings stability to microbiota for risk groups patients.

      1. Бухарин О. В., Перунова Н. Б., Иванова Е. В. Бифидофлора при ассоциативном симбиозе человека. - Екатеринбург: УрО РАН, 2014. - 211 с.
      2. Хавкин А. И. Микрофлора пищеварительного тракта. - М.: Фонд социальной педиатрии. - 2006. - 414 с.
      3. Мор М., Свидзинский А. Saccharomyces boulardii CNCM I-745 способствуют восстановлению микробиоты кишечника после дисбактериоза на фоне диареи. Клиническая и экспериментальная гастроэнтерология, 2015, № 8, с. 237-255
      4. Хавкин А. И., Комарова О. Н. Нарушение микробиоценоза кишечника у детей. Пособие для врачей. М: РНИМУ. - 2016. - 48 с.
      5. Хавкин А. И., Комарова О. Н. Эффективность поликомпонентных пробиотических препаратов, включающих штаммы Lactobacillus Acidophilus LA - 14, Lactobacillus reuteri и Bifidobacterium lactis при функциональных нарушениях пищеварения у детей раннего возраста: результаты проспективного, открытого, наблюдательного исследования. Экспериментальная и клиническая гастроэнтерология, 2017, выпуск 141, № 5, с. 57-64
      6. Бухарин О. В. Инфекционная симбиология - новое понимание старых проблем//Вестник Российской академии наук. - 2016. - Т. 86. - № 10. - С. 915-920
      7. Kuwahara A. Contributions of colonic short-chain fatty acid receptors in energy homeostasis. Front Endocrinol. 2014; 5:144.
      8. Abreu M. T. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 2010;10(2):131-144.
      9. Kim Y. S., Ho S. B. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep. 2010; 12(5): 319-330.
      10. O’Keefe S. J., Ou J., Delany J. P. et al. Effect of fiber supplementation on the microbiota in critically ill patients. World J Gastrointest Pathophysiol. 2011; 2(6):138-145.
      11. Voth D. E., Ballard J. D. Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev. 2005;18(2):247-263.
      12. Kimura I., Ozawa K., Inoue D. et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR 43. Nat Commun. 2013;4:1829.
      13. MacKenzie D. A., Defernez M., Dunn W. B. et al. Relatedness of medically important strains of Saccharomyces cerevisiae as revealed by phylogenetics and metabolomics. Yeast. 2008; 25(7): 501-512.
      14. Barc M. C., Charrin-Sarnel C., Rochet V. et al. Molecular analysis of the digestive microbiota in a gnotobiotic mouse model during antibiotic treatment: influence of Saccharomyces boulardii. Anaerobe. 2008; 14(4): 229-233.
      15. Graff S., Chaumeil J. C., Boy P., Lai-Kuen R., Charrueau C. Influence of pH conditions on the viability of Saccharomyces boulardii yeast. J Gen Appl Microbiol. 2008; 54(4): 221-227
      16. McFarland L. V. Use of probiotics to correct dysbiosis of normal microbiota following disease or disruptive events: a systematic review. BMJ Open. 2014; 4(8): e005047.
      17. Kelesidis T., Pothoulakis C. Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Ther Adv Gastroenterol. 2012; 5(2): 111-125.
      18. Barreto-Bergter E., Figueiredo R. T. Fungal glycans and the innate immune recognition. Front Cell Infect Microbiol. 2014; 4:145.
      19. Samuelsen A. B., Schrezenmeir J., Knutsen S. H. Effects of orally administered yeast-derived β-glucans: a review. Mol Nutr Food Res. 2014; 58(1): 183-193.
      20. Vannucci L., Krizan J., Sima P. et al. Immunostimulatory properties and antitumor activities of glucans (Review). Int J Oncol. 2013; 43(2):357-364.
      21. Goodridge H. S., Reyes C. N., Becker C. A. et al. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature. 2011;472(7344):471-475.
      22. Buccigrossi V., Laudiero G., Russo C. et al. Chloride secretion induced by rotavirus is oxidative stress-dependent and inhibited by Saccharomyces boulardii in human enterocytes. PLoS One. 2014;9(6): e99830.
      23. Oeztuerk H., Schroeder B., Beyerbach M., Breves G. Influence of living and autoclaved yeasts of Saccharomyces boulardii on in vitro ruminal microbial metabolism. J Dairy Sci. 2005; 88(7): 2594-2600.
      24. Buts J. P., De Keyser N., Marandi S. et al. Saccharomyces boulardii upgrades cellular adaptation after proximal enterectomy in rats. Gut. 1999; 45(1): 89-96.
      25. Czerucka D., Piche T., Rampal P. Review article: yeast as probiotics - Saccharomyces boulardii. Aliment Pharmacol Ther. 2007; 26(6): 767-778.
      26. Buts J. P., Dekeyser N., Stilmant C., Delem E., Smets F., Sokal E. Saccharomyces boulardii produces in rat small intestine a novel protein phosphatase that inhibits Escherichia coli endotoxin by dephosphorylation. Pediatr Res. 2006; 60(1): 24-29.
      27. Tiago F. C., Martins F. S., Souza E. L. et al. Adhesion to the yeast cell surface as a mechanism for trapping pathogenic bacteria by Saccharomyces probiotics. J Med Microbiol. 2012; 61(Pt 9): 1194-1207.
      28. Martins F. S., Dalmasso G., Arantes R. M. et al. Interaction of Saccharomyces boulardii with Salmonella enterica serovar Typhimurium protects mice and modifies T84 cell response to the infection. PLoS One. 2010; 5(1): e8925.
      29. Gedek B. R. Adherence of Escherichia coli serogroup O 157 and the Salmonella typhimurium mutant DT 104 to the surface of Saccharomyces boulardii. Mycoses. 1999; 42(4): 261-264.
      30. Zbinden R., Gonczi E.-E., Altwegg M. Inhibition of Saccharomyces boulardii (nom. inval.) on cell invasion of Salmonella typhimurium and Yersinia enterocolitica. Microb Ecol Health Dis. 2011; 11(3). ISSN 1651-2235.
      31. Ducluzeau R., Bensaada M. [Comparative effect of a single or continuous administration of “Saccharomyces boulardii” on the establishment of various strains of “candida” in the digestive tract of gnotobiotic mice]. Ann Microbiol. 1982; 133(3): 491-501. French.
      32. Kamada N., Chen G. Y., Inohara N., Nunez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013;14(7): 685-690.
      33. Everard A., Matamoros S., Geurts L., Delzenne N. M., Cani P. D. Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice. MBio. 2014; 5(3): e01011-e01014.
      34. Vanhoutte T., De Preter V., De Brandt E., Verbeke K., Swings J., Huys G. Molecular monitoring of the fecal microbiota of healthy human subjects during administration of lactulose and Saccharomyces boulardii. Appl Environ Microbiol. 2006; 72(9): 5990-5997.
      35. Osowska S., Swidsinski A., Kulik Z., Lawinski M., Pertkiewicz M. Impact of saccharomyces boulardii on colonic microbiota and plasma lactate in short bowel syndrome patients on long term parenteral nutrition.Dig Dis Week. 2013; 144(5): s895.
      36. Swidsinski A., Loening-Baucke V., Swidsinski S. Saccharomyces boulardii prevents the antibiotic induced changes in colonic microbiota. Gastroenterology. 2013; 144 (5 Suppl 1): S-824.
      37. Chen S. J., Liu X. W., Liu J. P., Yang X. Y., Lu F. G. Ulcerative colitis as a polymicrobial infection characterized by sustained broken mucus barrier. World J Gastroenterol. 2014; 20(28): 9468-9475.
      38. Yutin N., Galperin M. Y. A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ Microbiol. 2013; 15(10): 2631-2641.
      39. Vital M., Howe A. C., Tiedje J. M. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio. 2014; 5(2): e00889. NCBI Taxomomy Browser. Taxomomy Browser. Available from: http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi. Accessed July 2, 2015.
      40. Kabeerdoss J., Sankaran V., Pugazhendhi S., Ramakrishna B. S. Clostridium leptum group bacteria abundance and diversity in the fecal microbiota of patients with inflammatory bowel disease: a case-control study in India. BMC Gastroenterol. 2013;13:20.
      41. Sokol H., Pigneur B., Watterlot L. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008; 105(43): 16731-16736.
      42. Qiu X., Zhang M., Yang X., Hong N., Yu C. Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis. J Crohns Colitis. 2013; 7(11): e558-e568
      43. Swidsinski A., Loening-Baucke V., Kruger M., Kirsch S. Central nervous system and the colonic bioreactor: analysis of colonic microbiota in patients with stroke unravels unknown mechanisms of the host defense after brain injury. Intest Res. 2012; 10(4): 332-342.
      44. Staib L., Fuchs T. M. From food to cell: nutrient exploitation strategies of enteropathogens. Microbiology. 2014; 160(Pt 6): 1020-1039.
      45. Dubourg G., Lagier J. C., Armougom F. et al. High-level colonisation of the human gut by Verrucomicrobia following broad-spectrum antibiotic treatment. Int J Antimicrob Agents. 2013; 41(2): 149-155.
      46. Bradlow H. L. Obesity and the gut microbiome: pathophysiological aspects. Hormone Mol Biol Clin Invest. 2014; 17(1): 53-61
     


    Full text is published :
    Khavkin A.I., Komarova O.N. SACCHAROMYCES BOULARDII INFL UENCE OVER HUMAN MICROBIOTA. Literature review. Experimental and Clinical Gastroenterology Journal. 2017;142(06):126-132
    Read & Download full text

    1. Scientific research clinical pediatrician institute by Y. Veltishev (Moscow, Russian Federation)

    Keywords:breakfast,cereal,cognitive developmentsleep disturbance,whole grains

    Abstract: Grain-based products are widely used in nutrition throughout the life of a person, beginning with early childhood. When choosing the first type of complementary foods, priority is given to the cereal, since it has a high energy value and enriches the diet of the baby with vegetable proteins, fats, carbohydrates and other important biologically active compounds. Thus, it has been shown, during the period of active growth and development of the brain, hypoglycemic conditions that can lead to disruption of its functioning are unacceptable. To maintain normoglycemia, especially after an overnight fast, consumption of breakfast, including dishes from cereals, is important. This is important for the maturation of the brain in children and has a long-term effect on cognitive development. Cereals, rich in tryptophan, can be useful for correcting the sleep-wake cycle in children, middle-aged and elderly people, and also having a positive effect on mood. In addition, the consumption of whole grains reduces the risk of cardiovascular diseases, diabetes, obesity and colon cancer in adult patients.

      1. Национальная программа оптимизации вскармливания детей первого года жизни в Российской Федерации. Москва. Союз педиатров России. - 2011. - 68 с.
      2. Okarter N, Liu RH. Health benefits of whole grain phytochemicals. Crit Rev Food Sci Nutr 2010;50:193-208
      3. Digesù A. M., Platani C., Cattivelli L., Mangini G., Blanco A. Genetic variability in yellow pigment components in cultivated and wild tetraploid wheats. J. Cereal Sci. 2009;50:210-218.
      4. Okarter N, Liu RH. Health benefits of whole grain phytochemicals. Crit Rev Food Sci Nutr 2010; 50:193-208
      5. Adom KK, Sorrells ME, Liu RH. Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J Agric Food Chem 2005;53:2297-306
      6. Borrelli G. M., De Leonardis A. M., Platani C., Troccoli A. Distribution along durum wheat kernel of the components involved in semolina colour. J. Cereal Sci. 2008;48:494-502.
      7. Abdel-Aal E.M.S., Young J. C., Rabalski I., Hucl P., Fregeau-Reid J. Identification and quantification of seed carotenoids in selected wheat species. J. Agric. Food Chem. 2007;55:787-794.
      8. Yeum K. J., Russell R. M. Carotenoid bioavailability and bioconversion. Annu. Rev. Nutr. 2002;22:483-504.
      9. Del Pozo-Insfran D., Brenes C. H., Serna Saldivar S. O., Talcott S. T. Polyphenolic and antioxidant content of white and blue corn (Zea mays L.) products. Food Res. Int. 2006;39:696-703.
      10. Žofajová A., Pšenáková I., Havrlentová M., Piliarová M. Accumulation of total anthocyanins in wheat grain. Agricolture. 2012;58:50-56.
      11. Ficco D. B.M., de Simone V., Colecchia S. A., Pecorella I., Platani C., Nigro F., Finocchiaro F., Papa R., de Vita P. Genetic variability in anthocyanin composition and nutritional properties of blue, purple, and red bread (Triticum aestivum L.) and durum (Triticum turgidum L. ssp. turgidum convar. durum) wheats. J. Agric. Food Chem. 2014;62:8686-8695.
      12. Ranilla L. G., Genovese M. I., Lajolo F. M. Polyphenols and antioxidant capacity of seed coat and cotyledon from Brazilian and Peruvian bean cultivars (Phaseolus vulgaris L.) J. Agric. Food Chem. 2007;55:90-98.
      13. Azuma A., Yakushiji H., Koshita Y., Kobayashi S. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta. 2012;236:1067-1080.
      14. Chen C., Li H., Zhang D., Li P., Ma F. The role of anthocyanin in photoprotection and its relationship with the xanthophyll cycle and the antioxidant system in apple peel depends on the light conditions. Physiol. Plant. 2013;49:354-366.
      15. Shipp J., Abdel-Aal E.-S. Food applications and physiological effects of anthocyanins as functional food ingredients. Open Food Sci. J. 2010;4:7-22.
      16. Bowen-Forbes C.S., Zhang Y., Nair M. G. Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J. Food Compos. Anal. 2010;23:554-560.
      17. Wang L. S., Stoner G. D. Anthocyanins and their role in cancer prevention. Cancer Lett. 2008;269:281-290.
      18. Ghosh D., Konishi T. Anthocyanins and anthocyanin-rich extracts: Role in diabetes and eye function. Asia Pac. J. Clin. Nutr. 2007;16:200-208
      19. De Pascual-Teresa S., Moreno D. A., Darcia-Viguera C. Flavanols and anthocyanins in cardiovascular health. Int. J. Mol. Sci. 2010;11:1679-1703.
      20. Liu RH. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr2004;134: S 3479-85.
      21. Smith MM, Hartley RD. Occurrence and nature of ferulic acid substitution of cell wall polysaccharides in gramineous plants. Carbohydr Res 1983;118:65-80
      22. Klepacka J, Fornal Ł. Ferulic acid and its position among the phenolic compounds of wheat. Crit Rev Food Sci Nutr. 2006;46:639-47
      23. Andreasen MF, Kroon PA, Williamson G, Garcia-Conesa MT. Intestinal release and uptake of phenolic antioxidant diferulic acids. Free Radic Biol Med. 2001;31:304-314.
      24. Adom KK, Liu RH. Antioxidant activity of grains. J Agric Food Chem 2002;50:6182-7
      25. Cordain L., Eaton S. B., Sebastian A., Mann N., Lindeberg S., Watkins B. A., O’Keefe J.H., Brand-Miller J. Origins and evolution of the Western diet: Health implications for the 21st century. Am. J. Clin. Nutr. 2005;81:341-354
      26. Bett-Garber K.L., Lea J. M., Champagne E. T., McClung A. M. Whole-grain rice flavor associated with assorted bran colors. J. Sens. Stud. 2012;27:78-86.
      27. Okarter N., Liu R. H. Health benefits of whole grain phytochemicals. Crit. Rev. Food Sci. Nutr. 2010;50:193-208.
      28. Slavin J. Whole grains and digestive health. Cereal Chem. 2010;87:292-296.
      29. Adom KK, Sorrells ME, Liu RH. Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J Agric Food Chem 2005;53:2297-306
      30. World Health Organization. Global Strategy on Diet, Physical Activity and Health Worldwide Strategy about “Feeding Regimen, Physical Activity and Health”.
      31. World Health Organization; Washington, DC, USA: 2004.
      32. Alexy U., Zorn C., Kersting M. Whole grain in children’s diet: Intake, food sources and trends. Eur. J. Clin. Nutr. 2010;64:745-751
      33. Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? Nutr. Res. Rev. 2010;23:65-134
      34. Ma X., Tang W. G., Yang Y., Zhang Q. L., Zheng J. L., Xiang Y. B. Association between whole grain intake and all-cause mortality: a meta-analysis of cohort studies. Oncotarget. 2016;7:61996-62005
      35. Slavin J., Tucker M., Harriman C., Jonnalagadda S. S. Whole grains: Definition, dietary recommendations, and health benefits. Cereal Chem. 2016;93:209-216
      36. Ferruzzi M. G., Jonnalagadda S. S., Liu S., Marquart L., McKeown N., Reicks M., Riccardi G., Seal C., Slavin J., Thielecke F., et al. Developing a standard definition of whole-grain foods for dietary recommendations: Summary report of a multidisciplinary expert roundtable discussion. Adv. Nutr. 2014;5:164-176
      37. Signes-Pastor A., Carey M., Meharg A. A. Inorganic arsenic in rice-based products for infants and young children. Food Chem. 2016;191:128-134
      38. WHO. (2008). Worldwide Prevalence of Anaemia 1993-2005: WHO Global Database on Anaemiaeds de Benoist B., McLean E., Egli I., Cogswell M., editors. (Geneva: World Health Organization Press)
      39. Wessells K. R., Brown K. H. (2012). Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE 7: e5056810.
      40. Slavin J. L. Whole grains, refined grains and fortified refined grains: What’s the difference? Asia Pac. J. Clin. Nutr. 2000;9: S 23-S 27
      41. Eichler K, Wieser S, Rüthemann I, Brügger I. Effects of micronutrient fortified milk and cereal food for infants and children: a systematic reviewBMC Public Health. 2012; 12: 506
      42. Санитарно-эпидемиологические правила и нормативы 2.3.2.1940-05.
      43. Bubenik GA, Konturek SJ. Melatonin and aging: prospects for human treatment. J Physiol Pharmacol. 2011;62(1):13-19
      44. Cubero J, Narciso D, Terrón MP, Rial R, Esteban S, Rivero M, Parvez H, Rodríguez AB, Barriga C. Chrononutrition applied to formula milks to consolidate infants’ sleep/wake cycle. Neuroendocrinol Lett. 2007;28(4):360-366
      45. Sánchez S, Sánchez CL, Paredes SD, Barriga C, Rodríguez AB. Circadian levels of serotonin in plasma and brain after oral administration of tryptophan in rats. Basic Clin Pharmacol. 2008; 104:52-59
      46. Cubero J, Chanclón B, Sánchez S, Rivero M, Rodríguez AB, Barriga C (2009) Improving the quality of infant sleep through the conclusion at supper of cereals enriched with tryptophan, adenosine-5'-phosphate, and uridine-5'-phosphate. Nutr Neurosci
      47. Porter RJ, Mulder RT, Joyce PR, Luty SE. Trytophan and tyrosine availability and response to antidepressant in major depression. J Affect Disord. 2005
      48. Hussain AM, Mitra AK. Effect of reactive oxygen species on the metabolism of tryptophan in rat brain: influence of age. Mol Cell Biochem. 2004
      49. Cubero J, Otalora BB, Bravo R, Sánchez CL, Franco L, Uguz AC, Rodríguez AB, Barriga C. Distribution of 5-HT receptors in the mammalian brain. Trends Cell Mol Biol. 2011;6:41-46
      50. Bravo R., Matito S.,. Cubero J, Paredes S. D., Franco L., Rivero M., Rodríguez A. B., Barriga C. Tryptophan-enriched cereal intake improves nocturnal sleep, melatonin, serotonin, and total antioxidant capacity levels and mood in elderly humans. Age (Dordr). 2013 Aug; 35(4): 1277-1285
      51. Chugani HT. A critical period of brain development: studies of cerebral glucose utilization with PET. Prev Med. 1998;27:184-8
      52. Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997; 387:167-78
      53. Mata M, Fink DJ, Gainer H, Smith CB, Davidsen L, et al. Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem. 1980;34:213-5
      54. Bellisle F. (2004). Effects of diet on behaviour and cognition in children. Br. J. Nutr. 92, S 227-S 232 10.1079/BJN 20041171.
      55. Donin AS, Nightingale CM, Owen CG, Rudnicka AR, Perkin MR, Jebb SA, Stephen AM, Sattar N, Cook DG, Whincup PH. Regular Breakfast Consumption and Type 2 Diabetes Risk Markers in 9- to 10-Year-Old Children in the Child Heart and Health Study in England (CHASE): A Cross-Sectional Analysis.PLoS Med. 2014 Sep; 11(9): e1001703].
      56. Theodore R. F., Thompson J. M. D., Waldie K. E., Wall C., Becroft D. M. O., Robinson E., et al. (2009). Dietary patterns and intelligence in early and middle childhood. Intelligence 37, 506-513.
      57. Taki Y, Hashizume H, Sassa Y, Takeuchi H, Asano M, Asano K, Kawashima R. Breakfast Staple Types Affect Brain Gray Matter Volume and Cognitive Function in Healthy Children. PLoS One. 2010; 5(12): e15213.
      58. Foster-Powell K, Holt SH, Brand-Miller JC. International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr. 2002;76:5-56
      59. Edefonti V, Rosato V, Parpinel M, Nebbia G, Fiorica L, Fossali E, Ferraroni M, Decarli A, Agostoni C. The effect of breakfast composition and energy contribution on cognitive and academic performance: a systematic review.Am J Clin Nutr. 2014 Aug;100(2):626-56].
     


    Full text is published :
    Komarova O.N., Khavkin A.I. PRODUCTS ON CEREAL-BASED DIET IN ADULT AND CHILD: WHAT’S NEW?. Experimental and Clinical Gastroenterology Journal. 2017;142(06):133-140
    Read & Download full text