Submission of the manuscript is online via e-mail
ecgarticle@gmail.com or
cholerez@mail.ru

Tel: +7 903 250 5288

Editorial Correspondence e-mail
gastrossr@gmail.com


Publishing, Subscriptions, Sales and Advertising, Correspondence e-mail
journal@cniig.ru

Tel: +7 917 561 9505

SCImago Journal & Country Rank

    1. North–Western State Medical University named after I. I. Mechnikov (St. Petersburg, Russian Federation)
    2. State Research Institute of Highly Pure Biopreparations of FMBA of Russia (St. Petersburg, Russian Federation)
    3. A. I. Yevdokimov Moscow State University of Medicine and Dentistry (Moscow, Russian Federation)
    4. Institute of Experimental Medicine (St. Petersburg, Russian Federation)

    Keywords:Bacteroides fragilis group,butyrate,butyric acid,dysbiosis,Escherichia coli,gut microbiota,NAFLD,non-alcoholic fatty liver diseasepsyllium,Saccharomyces boulardii,steatosis

    Abstract:25 adult patients with NAFLD (steatosis only) were enrolled in the study. The quantitative real-time polymerase chain reaction (qRT-PCR) was used for fecal microbiota assessment. All patients were treated with oral lyophilized Saccharomyces boulardii for 90 days (3 capsules 250 mg per day). The count of Escherichia coli in patients with NAFLD steatosis was initially higher than the reference values obtained from healthy volunteers. Lyophilized S. boulardii for 90 days significantly reduced Bacteroides fragilis group and Escherichia coli. There were no significant changes in other fecal microbiota (total bacterial count, Lactobacillus group, Bifidobacterium spp., Faecalibacterium prausnitzii, etc.). Treatment with S. boulardii improved symptoms and quality of life in patients with NAFLD steatosis and significantly reduced VLDL and atherogenic index. Patients with overweight or obesity showed a decrease in body weight. In all patient steatosis showed no progression as assessed by FibroMax test, liver ultrasonography and telomere test Saccharomyces boulardii significantly reduced initially elevated fecal Escherichia coli in patients with NAFLD steatosis to normal values, thus reducing the risk of additional liver damage by endogenous ethanol and inhibiting the choline deficiency. S. boulardii significantly lowered Bacteroides fragilis group, thus reducing the risk of endotoxemia. The lack of progression of steatosis after 90 days suggests the effectiveness of S. boulardii in patients with NAFLD. Lyophilized Saccharomyces boulardii modulates the composition of the gut microbiota in patients with NAFLD steatosis and restores intestinal barrier integrity, thus preventing the progression of the disease.

      1. Radchenko V. G., Shabrov A. V., Zinov’eva E.N., Sitkin S. I.Zabolevaniia pecheni i zhelchevyvodiashchikh putei: rukovodstvo dlia vrachei. St. Petersburg, SpetsLit, 2011. [In Russian]
      2. Lazebnik L. B., Radchenko V. G., Golovanova Е. V., Zvenigorodskaya L. A., Konev Yu.V., Seliverstov P. V., Sitkin S. I., Tkachenko E. I., Avaluyeva E. B., Aylamazyan E. K., Vlasov N. N., Grinevich V. B., Korniyenko E. A., Novikova V. P., Khoroshinina L. P., Zhestkova N. V., Oreshko L. S., Dudanova O. P., Dobritsa V. P., Tur’yeva L.V., Tirikova O. V., Kozlova N. M., Yeliseyev S. M., Gumerov R. R., Ventsak E. V., Aleshina E. I., Gurova M. M., Goryacheva L. G. Nonalcoholic fatty liver disease: Clinic, diagnostics, treatment (Recommendations for therapists, 2nd edition). Eksp Klin Gastroenterol. 2017;(2):22–37. [In Russian]
      3. Szczepaniak LS, Nurenberg P, Leonard D, Browning JD, Reingold JS, Grundy S, Hobbs HH, Dobbins RL. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab. 2005 Feb;288(2): E462–8. doi: 10.1152/ajpendo.00064.2004.
      4. Reddy JK, Rao MS. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol. 2006 May;290(5): G852–8. doi: 10.1152/ajpgi.00521.2005.
      5. Mekhtiev S. N., Grinevich V. B., Kravchuk Iu.A., Brashchenkova A. V. Non-alcoholic fatty liver disease: A clinical presentation, diagnosis and treatment. Lechashchii vrach. 2008;(2):29–37. [In Russian]
      6. Day CP, James OF. Steatohepatitis: a tale of two «hits»? Gastroenterology. 1998 Apr;114(4):842–5. doi: 10.1016/S0016–5085(98)70599–2.
      7. Poeta M, Pierri L, Vajro P. Gut-Liver Axis Derangement in Non-Alcoholic Fatty Liver Disease. Children (Basel). 2017 Aug 2;4(8). pii: E66. doi: 10.3390/children4080066.
      8. Quigley EM, Stanton C, Murphy EF. The gut microbiota and the liver. Pathophysiological and clinical implications. J Hepatol. 2013 May;58(5):1020–7. doi: 10.1016/j.jhep.2012.11.023.
      9. Claus SP, Ellero SL, Berger B, Krause L, Bruttin A, Molina J, Paris A, Want EJ, de Waziers I, Cloarec O, Richards SE, Wang Y, Dumas ME, Ross A, Rezzi S, Kochhar S, Van Bladeren P, Lindon JC, Holmes E, Nicholson JK. Colonization-induced host-gut microbial metabolic interaction. MBio. 2011 Mar 1;2(2): e00271–10. doi: 10.1128/mBio.00271–10.
      10. Quigley EM, Monsour HP. The Gut Microbiota and Nonalcoholic Fatty Liver Disease. Semin Liver Dis. 2015 Aug;35(3):262–9. doi: 10.1055/s-0035–1562946.
      11. Miele L, Marrone G, Lauritano C, Cefalo C, Gasbarrini A, Day C, Grieco A. Gut-liver axis and microbiota in NAFLD: insight pathophysiology for novel therapeutic target. Curr Pharm Des. 2013;19(29):5314–24. doi: 10.2174/1381612811319290011.
      12. de Faria Ghetti F, Oliveira DG, de Oliveira JM, de Castro Ferreira LEVV, Cesar DE, Moreira APB. Influence of gut microbiota on the development and progression of nonalcoholic steatohepatitis. Eur J Nutr. 2017 Sep 5. doi: 10.1007/s00394–017–1524-x.
      13. Romano KA, Martinez-Del Campo A, Kasahara K, Chittim CL, Vivas EI, Amador-Noguez D, Balskus EP, Rey FE. Metabolic, Epigenetic, and Transgenerational Effects of Gut Bacterial Choline Consumption. Cell Host Microbe. 2017 Sep 13;22(3):279–290.e7. doi: 10.1016/j.chom.2017.07.021.
      14. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011 Apr 7;472(7341):57–63. doi: 10.1038/nature09922.
      15. Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology. 2011 Mar;140(3):976–86. doi: 10.1053/j.gastro.2010.11.049.
      16. Aron-Wisnewsky J, Gaborit B, Dutour A, Clement K. Gut microbiota and non-alcoholic fatty liver disease: new insights. Clin Microbiol Infect. 2013 Apr;19(4):338–48. doi: 10.1111/1469–0691.12140.
      17. Yu J, Marsh S, Hu J, Feng W, Wu C. The Pathogenesis of Nonalcoholic Fatty Liver Disease: Interplay between Diet, Gut Microbiota, and Genetic Background. Gastroenterol Res Pract. 2016;2016:2862173. doi: 10.1155/2016/2862173.
      18. Wieland A, Frank DN, Harnke B, Bambha K. Systematic review: microbial dysbiosis and nonalcoholic fatty liver disease. Aliment Pharmacol Ther. 2015 Nov;42(9):1051–63. doi: 10.1111/apt.13376.
      19. Shen F, Zheng RD, Sun XQ, Ding WJ, Wang XY, Fan JG. Gut microbiota dysbiosis in patients with non-alcoholic fatty liver disease. Hepatobiliary Pancreat Dis Int. 2017 Aug 15;16(4):375–381. doi: 10.1016/S1499–3872(17)60019–5.
      20. Loomba R, Seguritan V, Li W, Long T, Klitgord N, Bhatt A, Dulai PS, Caussy C, Bettencourt R, Highlander SK, Jones MB, Sirlin CB, Schnabl B, Brinkac L, Schork N, Chen CH, Brenner DA, Biggs W, Yooseph S, Venter JC, Nelson KE. Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metab. 2017 May 2;25(5):1054–1062.e5. doi: 10.1016/j.cmet.2017.04.001.
      21. Bajaj JS, Heuman DM, Hylemon PB, Sanyal AJ, White MB, Monteith P, Noble NA, Unser AB, Daita K, Fisher AR, Sikaroodi M, Gillevet PM. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol. 2014 May;60(5):940–7. doi: 10.1016/j.jhep.2013.12.019.
      22. Wong VW, Tse CH, Lam TT, Wong GL, Chim AM, Chu WC, Yeung DK, Law PT, Kwan HS, Yu J, Sung JJ, Chan HL. Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis – a longitudinal study. PLoS One. 2013 Apr 25;8(4): e62885. doi: 10.1371/journal.pone.0062885
      23. Teterina L. A., Chikhacheva E. A., Seliverstov P. V., Sitkin S. I., Radchenko V. G. Rol’ mikroflory tolstoi kishki v razvitii latentnoi pechenochnoi entsefalopatii. Lechashchii vrach. 2012;(9):73–78. [In Russian]
      24. Seliverstov P. V., Prikhod’ko E.M., Sitkin S. I., Radchenko V. G., Vakhitov T. Ia., Shavarda A. L. Rol’ narushenii mikrobiotsenoza kishechnika i ekzometabolitov mikrobioty v razvitii nealkogol’noi zhirovoi bolezni pecheni. Gastroenterologiia Sankt-Peterburga. 2016;(3–4): M21–M22. [In Russian]
      25. De Minicis S, Rychlicki C, Agostinelli L, Saccomanno S, Candelaresi C, Trozzi L, Mingarelli E, Facinelli B, Magi G, Palmieri C, Marzioni M, Benedetti A, Svegliati-Baroni G. Dysbiosis contributes to fibrogenesis in the course of chronic liver injury in mice. Hepatology. 2014 May;59(5):1738–49. doi: 10.1002/hep.26695.
      26. Jiang W, Wu N, Wang X, Chi Y, Zhang Y, Qiu X, Hu Y, Li J, Liu Y. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep. 2015 Feb 3;5:8096. doi: 10.1038/srep08096.
      27. Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, Guy CD, Seed PC, Rawls JF, David LA, Hunault G, Oberti F, Calès P, Diehl AM. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016 Mar;63(3):764–75. doi: 10.1002/hep.28356.
      28. Fialho A, Fialho A, Thota P, McCullough AJ, Shen B. Small Intestinal Bacterial Overgrowth Is Associated with Non-Alcoholic Fatty Liver Disease. J Gastrointestin Liver Dis. 2016 Jun;25(2):159–65. doi: 10.15403/jgld.2014.1121.252.iwg.
      29. Malaguarnera M, Vacante M, Antic T, Giordano M, Chisari G, Acquaviva R, Mastrojeni S, Malaguarnera G, Mistretta A, Li Volti G, Galvano F. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis. Dig Dis Sci. 2012 Feb;57(2):545–53. doi: 10.1007/s10620–011–1887–4.
      30. World Gastroenterology Organisation Global Guidelines ‘Probiotics and Prebiotics’. 2017 Feb. Available at: http://www.worldgastroenterology.org/guidelines/global-guidelines/probiotics-and-prebiotics/probiotics-and-prebiotics-english [Accessed 18 January 2018].
      31. Maevskaia E. A., Maev I. V., Kucheriavyi Iu.A., Cheremushkin S. V., Andreev D. N. Otsenka vliianiia laktulozy ili pishchevykh volokon na dinamiku pokazatelei lipidnogo profilia u patsientov s funktsional’nym zaporom i nealkogol’nym steatogepatitom. Lechashchii vrach. 2016;(4):117–124. [In Russian]
      32. Sitkin S. I. Pishchevye volokna v klinicheskoi praktike. Freiburg, St. Petersburg, Dr. Falk Pharma GmbH, 2009. [In Russian]
      33. Radchenko V. G., Safronenkova I. G., Seliverstov P. V., Sitkin S. I. Pishchevye volokna v klinicheskoi praktike. Klinicheskie perspektivy gastroenterologii, gepatologii. 2010;(1):20–27. [In Russian]
      34. Anderson JW, Jones AE, Riddell-Mason S. Ten different dietary fibers have significantly different effects on serum and liver lipids of cholesterol-fed rats. J Nutr. 1994 Jan;124(1):78–83.
      35. Akbarzadeh Z., Nourian M., Askari G., Maracy M. R. The effect of Psyllium on body composition measurements and liver enzymes in overweight or obese adults with nonalcoholic fatty liver disease (NAFLD). Int J Adv Biotechnol Res. 2016 Apr;7(Spec Iss 3):1545–1554.
      36. Endo H, Niioka M, Kobayashi N, Tanaka M, Watanabe T. Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis. PLoS One. 2013 May 16;8(5): e63388. doi: 10.1371/journal.pone.0063388.
      37. Jin CJ, Sellmann C, Engstler AJ, Ziegenhardt D, Bergheim I. Supplementation of sodium butyrate protects mice from the development of non-alcoholic steatohepatitis (NASH). Br J Nutr. 2015 Dec 14;114(11):1745–55. doi: 10.1017/S0007114515003621.
      38. Zhou D, Pan Q, Xin FZ, Zhang RN, He CX, Chen GY, Liu C, Chen YW, Fan JG. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier. World J Gastroenterol. 2017 Jan 7;23(1):60–75. doi: 10.3748/wjg.v23.i1.60.
      39. Cresci GA, Glueck B, McMullen MR, Xin W, Allende D, Nagy LE. Prophylactic tributyrin treatment mitigates chronic-binge ethanol-induced intestinal barrier and liver injury. J Gastroenterol Hepatol. 2017 Sep;32(9):1587–1597. doi: 10.1111/jgh.13731.
      40. Cobbold JFL, Atkinson S, Marchesi JR, Smith A, Wai SN, Stove J, Shojaee-Moradie F, Jackson N, Umpleby AM, Fitzpatrick J, Thomas EL, Bell JD, Holmes E, Taylor-Robinson SD, Goldin RD, Yee MS, Anstee QM, Thursz MR. Rifaximin in non-alcoholic steatohepatitis: An open-label pilot study. Hepatol Res. 2018 Jan;48(1):69–77. doi: 10.1111/hepr.12904.
      41. Terciolo C, Dobric A, Ouaissi M, Siret C, Breuzard G, Silvy F, Marchiori B, Germain S, Bonier R, Hama A, Owens R, Lombardo D, Rigot V, André F. Saccharomyces boulardii CNCM I-745 Restores intestinal Barrier Integrity by Regulation of E-cadherin Recycling. J Crohns Colitis. 2017 Aug 1;11(8):999–1010. doi: 10.1093/ecco-jcc/jjx030.
      42. Moré MI, Swidsinski A. Saccharomyces boulardii CNCM I-745 supports regeneration of the intestinal microbiota after diarrheic dysbiosis – a review. Clin Exp Gastroenterol. 2015 Aug 14;11:237–55. doi: 10.2147/CEG.S85574.
      43. Liu YT, Li YQ, Wang YZ. Protective effect of Saccharomyces boulardii against intestinal mucosal barrier injury in rats with nonalcoholic fatty liver disease. Zhonghua Gan Zang Bing Za Zhi. 2016 Dec 20;24(12):921–926. doi: 10.3760/cma.j.issn.1007–3418.2016.12.009.
      44. Li M, Zhu L, Xie A, Yuan J. Oral administration of Saccharomyces boulardii ameliorates carbon tetrachloride-induced liver fibrosis in rats via reducing intestinal permeability and modulating gut microbial composition. Inflammation. 2015 Feb;38(1):170–9. doi: 10.1007/s10753–014–0019–7.
      45. Liu C, Song Y, McTeague M, Vu AW, Wexler H, Finegold SM. Rapid identification of the species of the Bacteroides fragilis group by multiplex PCR assays using group- and species-specific primers. FEMS Microbiol Lett. 2003 May 16;222(1):9–16. doi: 10.1016/S0378–1097(03)00296–9.
      46. Rinttilä T., Kassinen A, Malinen E, Krogius L, Palva A. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol. 2004;97(6):1166–77. doi: 10.1111/j.1365–2672.2004.02409.x.
      47. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, van den Brandt PA, Stobberingh EE. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006 Aug;118(2):511–21. doi: 10.1542/peds.2005–2824.
      48. Penders J, Thijs C, van den Brandt PA, Kummeling I, Snijders B, Stelma F, Adams H, van Ree R, Stobberingh EE. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut. 2007 May;56(5):661–7. doi: 10.1136/gut.2006.100164.
      49. Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, Cosnes J, Corthier G, Marteau P, Doré J. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009 Aug;15(8):1183–9. doi: 10.1002/ibd.20903.
      50. Grzhibovskii A. M. Odnomernyi analiz povtornykh izmerenii. Ekologiia cheloveka. 2008;(4):51–60. [In Russian]
      51. Sitkin S. I., Vakhitov T. Ya., Tkachenko E. I., Oreshko L. S., Zhigalova T. N., Radchenko V. G., Seliverstov P. V., Avalueva E. B., Suvorova M. A., Komlichenko E. V. Gut microbiota in ulcerative colitis and celiac disease. Eksp Klin Gastroenterol. 2017;(1):8–30. [In Russian]
      52. Sakamoto M, Benno Y. Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Evol Microbiol. 2006 Jul;56(Pt 7):1599–605. doi: 10.1099/ijs.0.64192–0.
      53. Nakanishi H, Shojo H, Ohmori T, Hara M, Takada A, Adachi N, Saito K. Identification of feces by detection of Bacteroides genes. Forensic Sci Int Genet. 2013 Jan;7(1):176–9. doi: 10.1016/j.fsigen.2012.09.006.
      54. Hong PY, Wu JH, Liu WT. Relative abundance of Bacteroides spp. in stools and wastewaters as determined by hierarchical oligonucleotide primer extension. Appl Environ Microbiol. 2008 May;74(9):2882–93. doi: 10.1128/AEM.02568–07.
      55. Kabiri L, Alum A, Rock C, McLain JE, Abbaszadegan M. Isolation of Bacteroides from fish and human fecal samples for identification of unique molecular markers. Can J Microbiol. 2013 Dec;59(12):771–7. doi: 10.1139/cjm-2013–0518.
      56. Tkachenko E. I. Nutrition, human endoecology, health, diseases. Current views on their relations. Ter Arkh. 2004;76(2):67–71. [Article in Russian]
      57. Vakhitov T. Ia., Sitkin S. I. The superorganism concept in biology and medicine. Eksp Klin Gastroenterol. 2014;(7):72–85. [Article in Russian]
      58. Heinken A, Sahoo S, Fleming RM, Thiele I. Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes. 2013 Jan-Feb;4(1):28–40. doi: 10.4161/gmic.22370.
      59. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13780–5. doi: 10.1073/pnas.0706625104.
      60. Troy EB, Kasper DL. Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Front Biosci (Landmark Ed). 2010 Jan 1;15:25–34
      61. Narimani T, Douraghi M, Owlia P, Rastegar A, Esghaei M, Nasr B, Talebi M. Heterogeneity in resistant fecal Bacteroides fragilis group collected from healthy people. Microb Pathog. 2016 Jun;95:1–6. doi: 10.1016/j.micpath.2016.02.017.
      62. Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev. 2007 Oct;20(4):593–621. doi: 10.1128/CMR.00008–07.
      63. Xie G, Wang X, Liu P, Wei R, Chen W, Rajani C, Hernandez BY, Alegado R, Dong B, Li D, Jia W. Distinctly altered gut microbiota in the progression of liver disease. Oncotarget. 2016 Apr 12;7(15):19355–66. doi: 10.18632/oncotarget.8466.
      64. Brandl K, Schnabl B. Intestinal microbiota and nonalcoholic steatohepatitis. Curr Opin Gastroenterol. 2017 May;33(3):128–133. doi: 10.1097/MOG.0000000000000349.
      65. Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, Gill SR. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology. 2013 Feb;57(2):601–9. doi: 10.1002/hep.26093.
      66. Wang B, Jiang X, Cao M, Ge J, Bao Q, Tang L, Chen Y, Li L. Altered Fecal Microbiota Correlates with Liver Biochemistry in Nonobese Patients with Non-alcoholic Fatty Liver Disease. Sci Rep. 2016 Aug 23;6:32002. doi: 10.1038/srep32002.
      67. Xue L, He J, Gao N, Lu X, Li M, Wu X, Liu Z, Jin Y, Liu J, Xu J, Geng Y. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci Rep. 2017 Mar 28;7:45176. doi: 10.1038/srep45176.
      68. Cortez-Pinto H, Borralho P, Machado J, Lopes MT, Gato IV, Santos AM, Guerreiro AS. Microbiota Modulation With Synbiotic Decreases Liver Fibrosis in a High Fat Choline Deficient Diet Mice Model of Non-Alcoholic Steatohepatitis (NASH). GE Port J Gastroenterol. 2016 Mar 31;23(3):132–141. doi: 10.1016/j.jpge.2016.01.004.
      69. Engstler AJ, Aumiller T, Degen C, Dürr M, Weiss E, Maier IB, Schattenberg JM, Jin CJ, Sellmann C, Bergheim I. Insulin resistance alters hepatic ethanol metabolism: studies in mice and children with non-alcoholic fatty liver disease. Gut. 2016 Sep;65(9):1564–71. doi: 10.1136/gutjnl-2014–308379.
      70. Michail S, Lin M, Frey MR, Fanter R, Paliy O, Hilbush B, Reo NV. Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease. FEMS Microbiol Ecol. 2015 Feb;91(2):1–9. doi: 10.1093/femsec/fiu002.
      71. Akil I, Yilmaz O, Kurutepe S, Degerli K, Kavukcu S. Influence of oral intake of Saccharomyces boulardii on Escherichia coli in enteric flora. Pediatr Nephrol. 2006 Jun;21(6):807–10. doi: 10.1007/s00467–006–0088–4
      72. Patent 2595827 Russian Federation. Sposob prognozirovaniia effektivnosti provedeniia gepatotropnoi terapii u bol’nykh nealkogol’noi zhirovoi bolezn’iu pecheni. Khurtsilava O. G., Prikhod’ko E.M., Seliverstov P. V., Radchenko V. G., Sitkin S. I., Smolianinov A. B., Adylov Sh.F., Iurkevich Iu. V. Nr. 2015121975/15, 08.06.2015, opubl. 27.08.2016. Bulletin Nr. 24.
      73. Radchenko V. G., Seliverstov P. V., Ivanova V. F., Sitkin S. I. Algorithm of treatment of non-alcoholic fatty liver disease and the role of mitochondrial dysfunction in its development. Farmateka. 2017;(6):12–19. [In Russian]
     


    Full text is published :
    SACCHAROMYCES BOULARDII MODULATES THE COMPOSITION OF THE GUT MICROBIOTA IN PATIENTS WITH NON-ALCOHOLIC FATTY LIVER DISEASE, THUS PREVENTING THE PROGRESSION OF THE DISEASE. Experimental and Clinical Gastroenterology Journal. 2018;150(02):04-18
    Read & Download full text