Submission of the manuscript is online via e-mail
ecgarticle@gmail.com or
cholerez@mail.ru

Tel: +7 903 250 5288

Editorial Correspondence e-mail
gastrossr@gmail.com


Publishing, Subscriptions, Sales and Advertising, Correspondence e-mail
journal@cniig.ru

Tel: +7 917 561 9505

SCImago Journal & Country Rank

    1. Regional Clinical Hospital № 2, Krasnodar 350012, Russia

    Abstract:The relevance of milk-feeding of babies, the importance of not only the composition and properties of breast milk, but also the technology of enzymatic degradation of its nutrients are cosidered In the Assembly speech. First, it is produced according to the type of its own digestion by hydrolases of the digestive glands and the small intestine of the infant, the complex of which is formed antenatally and called the starting multienzyme digestive potential in the newborn child. Its quantitative characterization is possible by determining the main digestive hydrolases in the amniotic fl uid, in the blood of the umbilical cord and in the gastric aspirate of the infant. The expression of this potential in the point system is proposed. With incomplete gestation, the digestive potential is reduced. Secondly, hydrolysis of breast milk nutrients is carried out by its own hydrolases in the autolytic type of digestion. The dynamics of secretion of hydrolases by the mammary glands of healthy women during one year of lactation was studied. The quantitative dependence of the hydrolase secretion on its value in the fi rst lactation month is described with a general tendency to a decrease in the hydrolase content in milk with an increase in the monthly lactation period, and the dependence of the secretion of enzymes by the mammary glands from the age of the pregnant women. The dynamic convergence of the multienzyme digestive potentials of the child's digestion system and the mother's milk it takes is relevant in lactotrophy. Based on the results of peptidic analysis of auto-and inragastral proteolysis of breast milk, milk hydrolases are not only considered as trophotropic participants in the degradation of its nutrients, but also in formation of by milk proteases functionally multipotent regulatory peptides with a characteristic change in their number and content in the dynamics of infant feeding and timing of gestation.

      1. Arshavsky I. A., Nemets M. P. On the change of types of nutrition and digestion in ontogenesis. Advances of Physiological Sciences. 1996, vol.27, no.1, pp. 109–129.
      2. Kapitan T. V. Propedevtika detskikh boleznei s ukhodom za det’mi. M.: MEDpressinform; 2009, 657 p. (in Russian)
      3. Korot’ko G. F. Sistema pishhevarenija i tipy pitanija v ontogeneze. Krasnodar: “Tradicija”, 2014, 176 p. (In Russ.)
      4. Ugolev A. M. Digestive evolution and principles of function evolution. Th e elements of modern functionalism. Leningrad: Nauka; 1985. 544p. (in Russian)
      5. Ugolev A. M., Tsvetkova V. A. Induced autolysis as important mechanism of initial digestive stages in natural conditions. Fiziologicheskiy zhurnal SSSR im. I. M. Sechenova. 1984; 70(11): 1542–50. (in Russian)
      6. Maslov M. S. Textbook of pediatric diseases. L.: Meditsina, 1953.512 p.
      7. Albrecht T. W., Iaynes H. O. Milk Lipase // J. Dairy Sci. 1955. V. 38. N2. P. 137–146.
      8. Chandan K. C., Shahani K. M. Purifi cation and characterization of milk lipase // I. Purifi cation // J. Dairy Sci. 1963. V. 46. N4. P. 275–283.
      9. Fanaroff A. A., Martin R. Y. (Ed.) / Neonatal-Perinatal Medicina / Mosby. 2002. 1732 p.
      10. Hamosh M. Bioactiv Components in Human Milk // Pediatric. Basics. 2002. N99. P. 2–11.
      11. Adamkin D. H. Feeding strategy of newborns with very low body mass in birth. Trans. from English by Baibarina E. N. Moscow: GEOTAR-Media; 2013. 176p. (in Russian)
      12. Arshavsky I. A. Lipase of mother’s milk and its value in connection with the assessment of the negative aspects of artifi cial feeding. Pediatrics. 1940, no. 4, pp. 11–13
      13. Brockerhoff H., Jensen R. Lipolytic Enzymes: English transl. M.: Mir, 1978, 396 p.
      14. Volodin N. N. (gl. red.) Neonatologija. Nacional’noe rukovodstvo. M.: GEOTAR-Media, 2007, 848 p. (In Russ.)
      15. Hamosh M. Enzymes of human milk // Handbook of milk composition / Ed. R. Jencen. N. – Y.; Academic Press, 1995. P. 388–427.
      16. Shirina L. I., Mazo V. K. Sistema pishhevarenija rebenka, ee sozrevanie. Tuteljan V. A., Kon’ I. Ja. Detskoe pitanie. Rukovodstvo dlja vrachej, 2009. Ch. I, gl. 3: 25–50. (In Russ.)
      17. Shabalov N. P. (gl. red.) Neonatologiya – 4-e izd. [2-h t.]. M.: MEDpress-inform, 2006, 344 p. (In Russ.)
      18. Penzhoyan G. A., Model’ G.YU., Korot’ko G. F. Zakonomernost’ formirovaniya u novorozhdennyh detej digestivnogo startovogo potenciala. Diplom na otkrytie No499 ot 27.08.2017. registracionnyj No648. (In Russ.)]
      19. Volodin N. N. (gl. red.) Neonatologija. Nacional’noe rukovodstvo. M.: GEOTAR-Media, 2007, 848 p. (In Russ.)
      20. Baranov A. I., Klimanskaya G. V., Rimarchuk G. V. Detskaya gastroehnterologiya. M., 2003, 1029 p. (In Russ.)
      21. Tutelyan V. A. Pediatric nutrition. Manual for physicians (eds.: V. A. Tutelyan, I. Ya. Kon’). M.: LLC “Meditsinskoye informagentstvo”, 2009. 952 p.
      22. Korot’ko G. F. Types of digestion in breast feeding: returning to the problem. Problems of Nutrition. 2016, vol. 85, no.1, pp.19–28.
      23. Ugolev A. M. Natural technologies of biological systems. Saint Petersburg, Science Publ., 1987, 317 p.
      24. Ugolev A. M. Evolution of digestion and principles of evolution of functions. Elements of up-to-date functionalism. L.: Nauka, 1985. 544 p.
      25. Dallas DC, Guerrero A, Khaldi N, Borghese RA, BhandariA, Underwood MA et al. A peptidomic analysis of human milk digestion in the infant stomach reveals protein-specifi c degradation patterns // J. Nutr., 2014: 144(6). P. 815–820.
      26. Dallas DC, Murray NM, Gan J. Proteolytic systems in milk: perspectives on the evolutionary function within the mammary gland and the infant // J. Mammary Gland Biol Neoplasia. 2015 Dec; 20(3–4). P. 133–147.
      27. Dallas DC, Underwood MA, Zivkovic AM, German JB. Digestion of protein premature and term infants // J. Nutr. Disord. Th er. 2012: 2(3). P. 112–121.
      28. Ferranti P, Traisci MV, Picariello G, Nasi A, Boschi V, Siervo M et al. Casein proteolysis inhuman milk: Tracing the pattern of casein breakdown and theformation of potential bioactive peptides // J. Dairy Res. 2004. P. 71 (01), 7 4–87.
      29. Hamosh M. Enzymes of human milk // Handbook of milk composition / Ed. R. Jencen. N. – Y.; Academic Press, 1995. P. 388–427.
      30. Holton TA, Vijaykumar V, Dallas DC, Guerrero A, Borghese RA, Lebrilla CB et al. Following the digestion of milk proteins from mother to baby // J. Proteome Res. 2014. P. 13(12): 5777–5783.
      31. Kelly AL, O’Flaherty F, Fox PF. Indigenous proteolyticenzymes in milk: A brief overview of the present state of knowledge //Int. Dairy J. 2006. P. 16 (6), 563–572.
      32. Khaldi N, Vijayakumar V, Dallas DC, Guerrero A, Wickramasinghe S, Smilowitz JT et al. Predicting the important enzyme playersin human breast milk digestion // J. Agric. Food Chem. 2014. P. 62 (29),7225–7232.
      33. Silanikove N, Merin U, Leitner G. Physiological role ofi ndigenous milk enzymes: An overview of an evolving picture // Int. Dairy J. 2006. P. 16 (6), 533–545.
      34. Korotko G. F. Feeding and digestion on the earlier periods of human ontogenesis. Krasnodar: Tradition; 2016. 86p. (in Russian)
      35. Korotko G. F. Recurculation of digestive glands enzymes. Krasnodar: Publ. “EDVI”; 2011. 144p. (in Russian)
      36. Salaspuro M, Sipponen P, Sugano K, Sung J. Rationaleindiagnosisandscreening of atrophic gastritis with stomash-specifi c plasma bionarkers // Scand. J. Gastroenterol. 2012. P. 47(2), 136–147.
      37. Tzapok P. I., Drozdov V. N. Amniotic fl uid in system “Mother – placenta – fetus”. Kemerovo: Book publishers; 1986. 103p. (in Russian)
      38. Penzhoyan G. A., Model G. Yu., Korotko G. F., Khorolskii V. A. Amniotic fl uid hydrolase in newborn complex characteristics. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2017; (1): 66–70. (in Russian) http://dx.doi.org/10.18565/aig.2017.1.66–70
      39. Kolodkina E. V., Kamakin N. F. Gomeostaz inkretiruyemykh fermentov u zhenshchin pri beremennosti i v period grudnogo vskarmlivaniya [Homeostasis of Incremental Enzymes in Women During Pregnancy and During Breastfeeding]. Kirov, Kirov State Medical Academy Publ., 2008. 156 p.
      40. Kolodkina Ye.V., Kamakin N. F. Enzyme homeostasis in women at pregnancy, in relation to term and type of delivery. Kirov: Kirov SMA, 2008. 111 p.
      41. Kulik V. P., Shalygina N. B. Morphology of the small intestine: Manual on physiology. L.: Nauka, 1977. P. 5–81.
      42. Arshavsky I. A., Nemets M. P. On the change of types of nutrition and digestion in ontogenesis. Advances of Physiological Sciences. 1996, vol.27, no.1, pp. 109–129.
      43. Rakhimov K. R. Mechanisms of lactose assimilation in human and animal ontogenesis. Tashkent: Ed. “FAN” UzSSR AS, 1991. 136 p.
      44. Korot’ko G. F. Digestivnyj i reguljatornyj jeff ekty lipoliticheskoj aktivnosti himusa. Klinich. medicina. 2001; 11: 8–12. (In Russ.)
      45. Penjoyan G. A., Model’ G. Yu., Korot’ko G. F. Evaluation of the starting multienzyme digestive potential of newborns. Guidelines. Krasnodar. EDVI Publ., 2018, 44 p.
      46. Ostroumova T. A. Himiya i fi zika moloka. Uchebnoe posobie. Kemerovo Izd. KTIPP, 2004, 196 p. (In Russ.)
      47. Zakharova I. N., Dmitrieva Y. A., Gordeeva E. A. Milk fat globule membrane: Innovation discoveries just for today. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2015;60(6):15–21.
      48. Komarova O. N., Khavkin A. I. The milk fat globule membrane: Technology of the future is just today. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2016;61(2):35–41. (In Russ.) https://doi.org/10.21508/1027–4065–2016– 61–2–35–41
      49. Korot’ko G. F. Pishhevarenie pri grudnom vskarmlivanii detej (jenzimologicheskie akcenty). Rossijskij zhurnal gastrojenterologii, gepatologii, koloproktologii. 2015; 25 (3): 12–20 (In Russ.)
      50. Korot’ko G. F. Autologous and autolytic digestion in lactotrophy. Journal of Fundamental Medicine and Biology. 2017, no. 3, pp. 3–13.
      51. Ugolev A. M., Timofeeva N. M., Gruzdkov A. A. Adaptacija pishhevaritel’noj sistemy. Fiziologija adaptacionnyh processov: Ruk. po fi ziologii. M., Nauka, 1986, pp. 371– 480. (In Russ.)
      52. Nielsen S.D, Beverly R. L., Qu Y., Dallas D. C. Milk bioactive peptide database: A comprehensive database of milk protein-derived bioactive peptides and novel visualization. / Food Chemistry 232(2017). P. 673–682.
      53. Dallas D. C., German J. B. Enzymes of human milk. Nestle Nutr Inst Workshop Ser. 2017; 88. P. 129–136.
      54. Demers-Mathieu V., Nielsen S. D., Underwood M. A., Borghese R., Dallas D. C. Analysis of milk from mothers who delivered prematurely reveals few changes in proteases and protease inhibitors across gestational age at birth and infant postnatal age // J. Nutr., 2017; 147(6). P. 1152–1159.
      55. Rodrigues LR. Milk minor constituents, enzymes, hormones, growth factors, and organic acids. 2013. p. 1–60.
      56. Dallas DC, Smink CJ, Robinson RC, Tian T et al. Endogenous human milk peptide release is greater aft er preterm birth than term birth. J Nutr 2015 Mar;145(3). P. 425–33.
      57. Shaternikov V. A. Proteolytic activity and trypsin inhibitor content in blood serum and pancreatic juice at chronic pancreatitis. Vopr med khimii 1966; 12, issue 1:103–5.
      58. Hirsihowitz B. I. Th e control of pepsinogen secretion // Ann. Acad. Sci. 1967. V. 140. N4. Р. 709–23.
      59. Ugolev A. M., Iyezuitova N. N., Masevich Ts.G. et al. Investigation of human digestive system (Review of modern methods). L.: Nauka, 1969. 216 p.
      60. Abdullayev F. A. Modifi ed method of assessment of lipolytic activity of digestive secretions: abstracts of the Second Republic conference on clinical biochemistry. Tashkent, 1965. P. 45–8.
      61. Korot’ko G.F., Mirzakarimov U. M. O gidrolazakh grudnogo moloka. Vestnik intensivnoi terapii. 2014; 5: 75–80.
      62. Korot’ko G. F. Sekretsiya podzheludochnoy zhelezy [Secretion of the Pancreas]. 2nd ed. Krasnodar, KSMU Publ., 2005. 312 p.
      63. Rothman S., Liebow C., Isenman L. C. Conservationofdigestiveenzymes // Physiol. Rev. 2002; (82). P. 1–8.
      64. Serov V. N., Strizhakov S. A., Markin S. A. Prakticheskoe akusherstvo. Rukovodstvo dlya vrachei. M.: Meditsina. 1989, 512 p.
      65. Shahani K. M. Milk Enzymes: their role and significance // J. Dairy Sci. 1966. V. 8. P. 907–920.
      66. Hernell O. Human milk vs. Cow´s milk and the evolution of infant formulas. Nestle Nutr Inst Workshop Ser Pediatr Program, 2011. (67). P. 17–28.
      67. Neville M. C. Milk secretion: an overview // mammiary. nih.gov / reviews / lactation / Neville 001/21.09.2000.
      68. Korot’ko G. F. Hydrolase of breast milk in neborn lactotrophy. Journal of Fundamental Medicine and Biology. 2018, no. 2, pp. 3–12.
      69. Morozov I. A. Vesicular Intracellular Transport In Th e Digestive Organs. Membrane Vesicle – Th e Universal Mechanism Of Th e Functional Transport. Experimental and Clinical Gastroenterology. 2014, vol.102, no. 2, pp. 3–15.
      70. Degtyaryov В., Degtyareva T. V. Milk amylolytic activity: Abstr. I conf. biochem. Middle Asia, Kazakhstan. Tashkent, 1966. P. 128.
      71. Shcherbakov A. Y., Ue Si. Peculiarities of lactation function in puerpera. Mezhdunarodnyiy meditsinskiy zhurnal. 2008; 4: 56–59. (in Russian)
      72. Foundations of Peptide Regulation of the Physiological Functions: Blood-Brain Barrier and Evolution of Viscerato-Brain Communications by Alexander T. Maryanovich
      73. Korotko G. F. Proteolysis in regulation of function functions of the digestion system. Experimental and Clinical Gastroenterology. 2013, no. 10, pp. 23–27.
      74. Penjoyan G. A., Model’ G. Yu., Korot’ko G. F. Initial digestive potential of newborn Gastro-intestinal system. Journal of Fundamental Medicine and Biology. 2017, no. 2, pp. 20–27.
      75. Kharkova R. M. Digestive function in fi rst year infants at various nutrition types. Vopr pitaniya i vospitaniya detey. 1968. P. 17–27.
      76. Kharkova R. M. Adaptation of the function of digestion to qualitatively diff erent food of children of the fi rst year of life. Adaptation and compensatory mechanisms in the pathology of childhood: Collection of scientifi c Works. Moscow, 1972, pp. 39–41
      77. Rodriguez JM. Th e human milk microbiota. Pediatrics (Suppl.). 2016; 4. P. 35–40.
      78. Korotko G. F. Recretion of Ferments and Hormones by Exocrinal Glands. Advances of Physiological Sciences. 2003, vol.34, no.2, pp. 21–32.
      79. Grachev I. I., Galancev V. P. Fiziologiya laktacii, obshchaya i sravnitel’naya. Rukovodstvo po fi ziologii. L.: Nauka, 1973, 590 p. (In Russ.)]
      80. Del Aguila EM, Flosi Paschoalin VM, Silva JT, Conte-Junior CA. Functional Aspect of Colostrum and Whey Proteins in Human Milk. J Hum Nutr Food Sci. 2014. 2(3). P. 1035–1044.
      81. Wagner CL, Julie RD, Considerations in meeting protein needs of the human milkfed preterm infant. Advances in Neonatal Care: August 2014, 14(4). P. 281–289.
      82. Haschke F, Haiden N, Th akkar SK. Nutritive and bioactive proteins in breastmilk. Ann Nutr Metab. 2016; 69(2). P. 17–26.
     


    Full text is published :
    Korot’ko G. F. Lactotrophy of infants in terms of digestiology (Assembly speech). Experimental and Clinical Gastroenterology. 2019;161(1): 4–54. (In Russ.) DOI: 10.31146/1682-8658-ecg-161-1-4-54
    Read & Download full text

    1. Pirogov Russian National Research Medical University (RNRMU), Moscow 117997, Russia

    Keywords: children, intestinal microfl ora, microbiota, мicrobiome, humus, probiotics, рrebiotics, metabiotiсs, synbiotics, autometabiolites.

    Abstract:Microbiota plays a key role in the physiology and maintenance of homeostasis of the human body. The importance belongs to the processes of the formation of the intestinal microbiota, starting in utero, and the child continues to receive the mother’s microfl ora during childbirth and breastfeeding. The results of molecular genetic studies indicate that the most intensive process of microbial colonization in infant is associated with features of feeding. The main factor in maintaining the stability and resistance of normal biota is microbial autometabiolites. Considered the most promising probiotic biotechnology and development metabolic of probiotics (metabiotics) probiotics in combination with Prebiotics (synbiotics). Understanding the processes of formation of intestinal microfl ora allows you to develop eff ective methods of prevention and correction micro-ecological and motor disorders in the age aspect.

      1. Dietert R. (Дитерт Р.) Человеческий суперорганизм. М.: КоЛибри, Азбука-Аттикус, 2016: 416 с.
      2. Falkowski P. G. (Фальковски П.) Двигатели жизни: как бактерии сделали наш мир обитаемым. М.-СПб: Питер, 2016: 270 с.
      3. Kozhevnikov A. A., Raskina K. V., Martynova E. Yu. et al. Intestinal microbiota: modern concepts of the species composition, functions and diagnostic techniques. RMJ. 2017, no. 17, pp. 1244–1247 (in Russ)
      4. Landman C., Qmvrain E. Gut microbiota: Description, role and pathophysiologic implications. Rev Med Interne. 2016; 37 (6): 418–423. DOI:10.1016/j.revmed. 2015.12.012.
      5. Yakushin A. S., Denisov M. Yu. Infl uence of intestinal microbiota on the immune system of the child in the fi rst thousand days of life and the possibility of probiotic correction. Pediatrics (Suppl. Consilium Medicum). 2018, no. 2: pp. 43–46. DOI: 10.26442/2413–8460_2018.2.43– 46 (in Russ)
      6. Koleva P, Kim J, Scott J. Kozyrskyj A. Microbial programming of health and disease starts during fetal life. Birth Defects Res С Embryo Today 2015; 105 (4): 265–277.
      7. Aagaard K., Ma J., Antony K. M., Ganu R., Petrosino J., Versalovic J. Th e placenta harbors a unique microbiome. Sci Trans Med. 2014; 6: 237–239. DOI: 10.1126/ scitranslmed.3008599
      8. Marchesi J. R., Adams D. H., Fava F., Hermes Hirschfi eld G. M., Hold G. et al. Th e gut microbiota at health: A new clinical frontier. Gut. 2016; 65: 330–339 10.1136/gutjnl-2015–309990.
      9. Bondarenko VM, Ryabichenko EV. Intestinal-brain axis. Neuronal and immune-infl ammatory mechanisms of brain and intestine pathology. Zh MikrobiolEpidemiolImmunobiol. 2013;(2):112–120. (In Russ).
      10. Cong X., Xu W., RomisherR., Poveda S., Forte S., Starkweather A. et al. Gut Microbiome and Infant Health: Brain-Gut – Microbiota Axis and Host Genetic Factors. Yale J Biol Med 2016; 89 (3): 299–308.
      11. Eckburg P.B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M. Diversity of the human in microbial fl ora. Science. 2005; 308 (5728):1635–1638. DOI: 10.1126/ science.1110591
      12. Korotkij N. G., Narinskaja N. M., Bel’mer S.V., Ardatskaja M. D. Microbiotheria and motor disorders of the gastrointestinal tract in severe atopic dermatitis in children.Experimental and Clinical Gastroenterology Journal 2016, vol. 125, no. 1, pp. 21–27. (in Russ)
      13. Kоstic A. D., Xavier R. J., Gevers D. Th e microbiome in infl ammatory bowel disease: current status and the future ahead. Gastroenterology. 2014; 146 (6):1489–1499. DOI: 10.1053/j. gastrо.2014.02.009
      14. Shenderov B. A. Mikrobnaya ekologiya cheloveka i ee rol v podderzhanii zdorovya // Metamorfozy. 2014, no. 5. pp. 72–80 (in Russ)
      15. Wang X., Li G. H., Zou C. G. et al. Bacteria can mobilize nematode-trapping fungi to kill nematodes. Nat. Commun.2014; 16: 5776. DOI: 10.1038/ncomms6776
      16. Buharin O. V., Perunova N. B. Mikrosimbiocenoz [Microbiocenosis]. Ekaterinburg: UrO RAN. 2014. 260p
      17. Ohland C. L., Jobin C. Microbial activities and intestinal homeostasis: a delicate balance between health and disease. Cell Mol Gastroenterol Hepatol. 2015; 1 (1): 28–40.
      18. Chelpachenko O. E., Danilova E. I., CHajnikova I.N., Perunova N. B., Ivanova E. I. Bioplenki kishechnyh mikrosimbiontov detej s reaktivnym artritom [Biofi lms of intestinal microsymbionts in children with reactive arthritis] Lechashchij vrach. 2018, no. 4, pp. 56–58
      19. Makarova S. G., Broeva M. I. Different Factors Influencing Early Stages of Intestine Microbiota Formation. Pediatric pharmacology. 2016, vol. 13, no. 3, pp. 270–282. (In Russ.) https://doi.org/10.15690/pf.v13i3.1577
      20. Nikolaeva I. V., Tsaregorodtsev A. D., Shaikhieva G. S. Formation of the intestinal microbiota if children and the factors that infl uence this process. Ros Vestn Perinatol i Pediatr 2018; vol. 63, no. 3, pp. 13–18 (in Russ). DOI: 10.21508/1027–4065–2018–63–3–13–18
      21. Boulange C. L., Neves A. L., Chilloux J., Nicholson J. K, Dumas M. Impact of the gut microbiota on infl ammation, obesity, and metabolic disease. Genome Medicine 2016; 8 (42): 1–12. DOI: 10.1186/sl3073–016–0303–2.
      22. Cardwell C. R., Stene L. C., Joner G. et al. Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetologia. 2008. № 51: 726–735.
      23. Jose P. A., Raj D. Gut microbiota in hypertension. Curr Opin Nephrol Hypertens 2015; 24 (5): 403–409.
      24. Symposium “Destruction of microbioma and functional pathology of the digestive tract in children: acute issues of daily practice”. Review of speeches by I. N. Zakharova, A. I. Khavkin, S. V. Belmer. Pediatrics (Suppl. Consilium Medicum). 2017, no. 4, pp. 59–66.
      25. Szajewska H., Gyrczuk Е., Horvath А. Lactobacillus reuteri DSM 17938 for the Management of Infantile Colic in Breastfed Infants: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Pediatr. 2012; 162: 257–262.
      26. Hunter C, Dimaguila M, Gal P et al. Eff ect of routine probiotic, Lactobacillus reuteri DSM 17938, use on rates of necrotizing enterocolitis in neonates with birthweight 1000 grams: a sequential analysis. BMC Pediatr. 2012; 12 (1): 142.
      27. Chicherin I. Yu., Pogorelsky I. P., Lundovskikh I. A., Darmov I. V., Shabalina M. R., Podvolotsky A. N. Comparative experimental evaluation of the eff ectiveness of modern probiotics, prebiotics, synbiotics and metabiotics for correction of intestinal microbiocenosis in animals with antibiotic-associated dysbiosis. 2016, vol. 131, no. 7, pp. 106–120.
      28. Zakharova I. N., Lavrov T. E., Talysina M. F., Machneva E. B. A new look at prebiotics: hypotheses, trends, evidence. Pediatrics (Suppl. Consilium Medicum). 2017, no. 3, pp. 26–33.
      29. Boyle R. J. Tang M. L., Chiang W. C. et al. Prebiotic-supplemented partially hydrolysed cows milk formula for the prevention of eczema in high-risk infants: a randomized controlled trial. Allergy. 2016. 71 (5): 701–710.
      30. Metabiotiki novaya ideya ili estestvennoe razvitie probioticheskoj koncepcii obzor [Metabiotics new idea or natural development of a probiotic concept review] RMJ Medicinskoe obozrenie Gastroehnterologiya. 2017, no. 2, pp. 106–110.
      31. Plotnikova E. Yu., Zakharova Yu. V. Th e place of probiotics in modern clinical practice. Pediatrics (Suppl. Consilium Medicum). 2018; no. 1, pp. 95–99. DOI: 10.26442/2413–8460_2018.1.95–99.
      32. Kang D. W., Adams J. В., Gregory A. C., Borody Т., Chittick L., Fasano A. et al. Microbiota Transfer Th erapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome. 2017; 5 (1): 10. DOI: 10.1186/ S40168–016–0225–7
      33. Zaprudnov A. M., Haritonova L. A., Grigorev K. I., Bogomaz L. V. Gastroehnterologiya istoki i perspektivy izucheniya [Problems and perspectives of modern pediatric gastroenterology] Experimental and Clinical Gastroenterology Journal. 2015, no.1, pp. 4–12.
      34. Pahomovskaya N. L., Venediktova M. M. Vliyanie mikrobioty rebenka pervogo goda zhizni na ego razvitie [Impact of early-life microbiota on the development of infants] Medicinskij sovet. 2018, no.2, pp. 200–205.
      35. Hov J.E.R., Tröseid M. Personalised medicine targening the gut microbiiota? Tidssk Den Norlegeforening. 2015; 135 (7): 624–625.
     


    Full text is published :
    Kharitonova L. A., Grigoriev K. I., Borzakova S. N. Human microbiote: how a new scientifi c paradigm changes medical practice. Experimental and Clinical Gastroenterology. 2019;161(1): 55–63. (In Russ.) DOI: 10.31146/1682-8658-ecg-161-1-55-63
    Read & Download full text