Submission of the manuscript is online via e-mail
ecgarticle@gmail.com or
cholerez@mail.ru

Tel: +7 903 250 5288

Editorial Correspondence e-mail
gastrossr@gmail.com


Publishing, Subscriptions, Sales and Advertising, Correspondence e-mail
journal@cniig.ru

Tel: +7 917 561 9505

SCImago Journal & Country Rank

    1. City clinical hospital № 30, 603157, Nizhny Novgorod, Russia
    2. FSBEI HE “Privolzhsky Research Medical University” MOH Russia, 603005, Nizhny Novgorod, Russia
    3. Institute of Applied Physics RAS, 603950, Nizhny Novgorod, Russia

    Keywords: Аcute mesenteric ischemia, intestinal infarction, mesenteric arterial occlusion, microcirculation, optical coherence tomography, optical coherence angiography, acute bowel ischemia, small bowel strangulation, ischemic necrosis, morphometry, hemorrhagic necrosis

    Abstract:The objective is to study the morphometric signs of small bowel ischemic damage basing on intravital optical coherence tomography data and further histological analysis Materials and methods. The study was carried out on male Wistar rats with the use of two models of acute intestinal ischemia: acute occlusive mesenteric ischemia by а. jejunales ligation (group “I”) and acute arteriovenous ischemia by a small bowel loop and frill strangulation together with а. et v. jejunales (group “II”). The state of intramural vessels in vivo was evaluated with the use of optical coherence angiography (OCA). After the macroscopic signs of non-viability appeared the bowel was resected and its stepwise histological analysis was carried out. Results. Ischemic damage development in group “I” was accompanied by decrease of bowel wall thickness by 34,8–42,4% (p=0,032) due to submucous layer destruction — based on histological analysis data and also by decrease of total length of functioning intramural vessels by 4,6% (p=0,004) — based on OCA data. According to the OCA data in group “II” the length of functioning vessels decreased by 89,6%in the strangulated bowel loop and by 6,1% in adducent and abducent sections (p=0,001). In the strangulated loop histological specimens sharply dilated thrombosed veins were seen in all layers of bowel wall, seromuscular layer oedema and diapedesis hemorrhages of mucous coat also took place as well as bowel wall thickening by 25,2% in comparison with the intact one. Conclusions. Сomplex analysis of in vivo optical coherence tomography results and further histological analysis of ischemic small bowel wall made it possible to determine the morphological manifestations which are specifi c for arterial and arteriovenous mesenteric blood fl ow disorder. In cases of mesenteric artery occlusion hypoperfusion and mucous coat ischemia are predominant among pathogenetic mechanisms of bowel wall alteration. In the strangulated bowel the main factor of destruction and necrosis is acute insuffi ciency of venous outfl ow.

      1. Acosta S. Mesenteric ischemia. Current opinion in critical care. 2015;21(2):171–178. https://doi.org/10.1097/ MCC.0000000000000189
      2. Yartsev PA, Titova GP, Grishin AV, et al. Compensatory opportunities of the small intestine aft er extensive distal and proximal resection (experimental study). Sklifosovsky Journal of Emergency Medical Care. 2017; 6(2): 124–131. (In Russ.). https://doi.org/10.23934/2223–9022–2017–6–2–124–131
      3. Timerbulatov VM, Timerbulatov ShV, Sagitov RB et al. Diagnostics of the intestine ischemic damaged in some acute surgical diseases of abdominal cavity. Kreativnaja hirurgija i onkologija. 2017; 7(3):12–19. (In Russ.). https://doi. org/10.24060/2076–3093–2017–7–3–12–19
      4. Khasanov RR, Gumerov AA, Vessel LM. Th e role of small intestine length in the development of short bowel syndrome. Hirurgija. Zhurnal im. N. I. Pirogova. 2017;1:63–67. (In Russ.) https://doi.org/10.17116/hirurgia2017163–67
      5. Hripun AI, Shurygin SN, Mironkov AB, Prjamikov AD. Venous acute disturbance of mesenteric circulation: diagnosis and treatment. Hirurgija. Zhurnal im. N. I. Pirogova. 2017; 12:95–102. (In Russ.). https://doi.org/10.17116/hirurgia20171295–102
      6. Matveev LA, Zaitsev VY, Gelikonov GV et al. Hybrid M-modelike OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans. Optics letters. 2015; 40;7:1472–1475. https://doi. org/10.1364/ol.40.001472
      7. Kurysheva NI, Maslova EV. Optical coherence tomography angiography in glaucoma diagnosis. Vestnik oft almologii. 2016; 5: 98–102. (In Russ.). https://doi.org/10.17116/oft alma2016132598–102
      8. Chen C, Yang VXD. Gabor optical coherence tomographic angiography (GOCTA) (Part I): human retinal imaging in vivo. Biomed Opt Express. 2017 Nov 20;8(12):5724–5734. https://doi.org/ 10.1364/BOE.8.005724
      9. Schlett CL, Maurovich Р, Ferencik М et al. Histogram analysis of lipid-core plaques in coronary computed tomographic angiography: ex vivo validation against histology. Invest Radiol. 2013 Sep;48(9):646–53. https://doi.org/10.1097/ RLI.0b013e31828fdf9f
      10. Tang Q., et al. Depth-resolved imaging of colon tumor using optical coherence tomography and fl uorescence laminar optical tomography. Biomed. Opt. Express. 2016; 7(12): 5218–5232. https://doi.org/10.1364/BOE.7.005218
      11. Kohli D.R., et al. Performance characteristics of optical coherence tomography in assessment of Barrett’s esophagus and esophageal cancer: systematic review. Diseases of the Esophagus. 2017; 30(11): 1–8. https://doi.org/10.1093/dote/dox049.
      12. Moiseev A., Ksenofontov S., Gorozhantseva M. et al. Real time OCT-based angiography device with hand-held probe for everyday clinical use. Journal of Biophotonics. 2018 May 7: e201700292. https://doi.org/10.1002/jbio.201700292
     


    Full text is published :
    Ryabkov M. G., Baleev M. S., Kiseleva E. B., Sirotkina M. A., Romanov I. N., Gelikonov G. V., Bederina E. L., Mironov А. А., Beschastnov V. V., Gladkova N. D. Bowel wall in cases of acute ischemia: intravital optical coherence tomography and histological analysis data. Experimental and Clinical Gastroenterology. 2019;162(2): 96–101. (In Russ.) DOI: 10.31146/1682-8658-ecg-162-2-96-101
    Read & Download full text

    1. Research Institute of Human Morphology, 117418, Moscow, Russia

    Keywords: colon, rat, newborn, prepubescent, enteric nervous system, enteroendocrine cells, serotonin, microfl ora

    Abstract:The aim was to characterize the structural and functional features of the nervous and endocrine systems and the microbiota composition of the colon in newborns and prepubescent Wistar rats. Materials and methods: The study was performed on 12 newborns and 13 prepubescent male Wistar rats. We used immunohistochemical methods to investigate the structure of the intermuscular nerve plexus and to detect endocrine cells in the colon. The concentration of serotonin in the colon wall and peripheral blood plasma was evaluated with high-performance liquid chromatography. The ratio of the main taxa of bacteria of the luminal microbiota was determined by real-time PCR. Results: We identifi ed that in the neonatal period the intermuscular nerve plexus was not completely formed, there were few glial cells in the ganglia. The relative number of enteroendocrine cells and the serotonin content in the intestinal wall and in blood at this age period was minimal. The composition of the luminal microbiota in newborn rats was characterized by the predominance of taxons Firmicutes, Enterobacteria. In comparison with the newborns the intermuscular nerve plexus in the prepubescent rats was mature: the neural network formed large mesh, while the number of glial cells in the ganglia increased 3–4 times. The number of enteroendocrine cells increased 2.5 times, the content of serotonin in the colon wall and peripheral blood increased almost 80 and 6000 times, respectively. Firmicutes predominated in the luminal microfl ora, the number of Bifi dobacteria, Enterobacteria decreased.

      1. Furness J. B. Th e enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 2012; 9(5): 286–94. doi: 10.1038/nrgastro.2012.32.
      2. Gunawardene A. R., Corfe B. M., Staton C. A. Classifi cation and functions of enteroendocrine cells of the lower gastrointestinal tract. Int. J. Exp. Pathol. 2011; 92(4): 219–31. doi: 10.1111/j.1365–2613.2011.00767.x.
      3. Chen M., Gao L., Chen P., Feng D., Jiang Y., Chang Y., Jin J., Chu F. F., Gao Q. Serotonin-exacerbated DSS-induced colitis is associated with increase in MMP-3 and MMP-9 expression in the mouse colon. Mediators Infl amm. 2016;2016:5359768. doi: 10.1155/2016/5359768
      4. Nicholson J. K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W., Pettersson S. Host-Gut Microbiota Metabolic Interactions. Science. 2012; 336(6086): 1262–7. doi: 10.1126/science.1223813.
      5. Pistollato F., Sumalla Cano S., Elio I., Masias Vergara M., Giampieri F., Battino M. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev. 2016; 74(10): 624–34. doi: 10.1093/nutrit/nuw023.
      6. Gabbani T., Marsico M., Marocchi M., Biagini M. R. Isolated hypoganglionosis in young man with autism. Dig. Liver Dis. 2017; 49(1): 104. doi: 10.1016/j.dld.2016.10.002.
      7. Mercado C. P., Quintero M. V., Li Y., Singh P., Byrd A. K., Talabnin K., Ishihara M., Azadi P., Rusch N. J., Kuberan B., Maroteaux L., Kilic F. A. serotonin-induced N-glycan switch regulates platelet aggregation. Sci Rep. 2013; 3:2795. doi: 10.1038/srep02795.
      8. Amireault P., Sibon D., Côté F. Life without peripheral serotonin: insights from tryptophan hydroxylase 1 knockout mice reveal the existence of paracrine/autocrine serotonergic networks. ACS Chem. Neurosci. 2013; 4(1): 64–71. doi: 10.1021/cn300154j.
      9. Castrogiovanni P., Musumeci G, Trovato FM, Avola R, Magro G, Imbesi R. Eff ects of high-tryptophan diet on pre- and postnatal development in rats: A morphological study. Eur. J. Nutr. 2014; 53(1): 297–308. doi: 10.1007/ s00394–013–0528–4.
      10. Cossais F., Durand T., Chevalier J., Boudaud M., Kermarrec L., Aubert P., Neveu I., Naveilhan P., Neunlist M. Postnatal development of the myenteric glial network and its modulation by butyrate. Am. J. Physiol. – Gastrointest. Liver Physiol. 2016; 310(11): G941–51. doi: 10.1152/ ajpgi.00232.2015.
      11. Peck C. J. Samsuria S. D., Harrington A. M., King S. K., Hutson J. M., Southwell B. R. Fall in density, but not number of myenteric neurons and circular muscle nerve fi bres in guinea‐pig colon with ageing. Neurogastroenterol Motil. 2009; 21(10): 1075-e90. doi: 10.1111/j.1365– 2982.2009.01349.x.
      12. Oshima S., Fujimura M., Fukimiya M. Changes in number of serotonin-containing cells and serotonin levels in the intestinal mucosa of rats with colitis induced by dextran sodium sulfate. Histochem Cell Biol. 1999; 112(4): 257–63
      13. Chen J. J., Li Z., Pan H. Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the high-affi nity serotonin transporter: Abnormal intestinal motility and the expression of cation transporters. J. Neurosci. 2001; 21(16): 6348–61.
      14. Nasuti C., Coman M. M., Olek R. A., Fiorini D., Verdenelli M. C., Cecchini C., Silvi S., Fedeli D., Gabbianelli R. Changes on fecal microbiota in rats exposed to permethrin during postnatal development. Environ Sci Pollut Res Int. 2016; 23(11): 10930–7. doi: 10.1007/s11356–016– 6297-x
      15. de Vries P., Soret R., Suply E., Heloury Y., Neunlist M. Postnatal development of myenteric neurochemical phenotype and impact on neuromuscular transmission in the rat colon.American Journal of Physiology-Gastrointestinal and Liver Physiology. 2010; 299(2): G539–47. doi: 10.1152/ajpgi.00092.2010.
      16. Yano J. M., Yu K., Donaldson G. P., Shastri G. G., Ann P., Ma L., Nagler C. R., Ismagilov R. F., Mazmanian S. K., Hsiao E. Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015 Apr 9;161(2):264–76. doi: 10.1016/j.cell.2015.02.047.
      17. Savelieva K. V., Zhao S., Pogorelov V. M., Rajan I., Yang Q., Cullinan E., Lanthorn T. H. Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and aff ects behavior in models sensitive to antidepressants. PLoS One. 2008; 3(10): e3301. doi: 10.1371/ journal.pone.0003301.
     


    Full text is published :
    Tikhonov E. A., Zolotova N. A., Khochansky D. N., Makarova O. V. Structural and functional characteristic of the nervous and endocrine systems and the microbiota composition in the colon of the newborn and prepubescent wistar rats. Experimental and Clinical Gastroenterology. 2019;162(2): 102–106. (In Russ.) DOI: 10.31146/1682-8658-ecg-162-2-102-106
    Read & Download full text

    1. Central State Medical Academy of Department of Presidential Aff airs, Moscow, Russia
    2. City Clinical Hospital № 1. named N. I. Pirogov, Moscow, Russia
    3. Polyclinic № 2, Moscow, Russia
    4. MEDSI, Moscow, Russia

    Keywords: abdominal MDCT, CT diagnosis of pathology of the colon wall, CT diagnosis of Crohn’s disease. CT diagnosis of lymphoma of the colon

    Abstract:Thickening of the wall of the colon (TC) is one of the easily detectable and common symptoms of TC diseases detected by computed tomography (CT). The aim of the study was to reveal the possibilities of standard abdominal CT in the diagnosis of TC disease. To achieve this goal, 359 CT of the abdominal cavity performed according to the standard Protocol were analyzed. The average age of patients was 64.1+15.8 years. Gender ratio: prevalence of male patients 1,3:1,0. The normal thickness of the wall of the colon depends on the degree of expansion of the lumen or stretching and in most cases is changeable. The thickening of the TC wall was considered to be a persistent mismatch of its thickness to the inner lumen or outer diameter, taking into account the extreme values of the norms according to the literature data from 2 to 10 mm. The Analyzed cases of thickening of the TC wall were divided into 3 groups: focal (53%), segmental (30%) or diff use thickening (17%). Wall thickening defi ned in nonspecifi c infl ammatory diseases (Crohn’s disease, ulcerative colitis, undiff erentiated, pseudomebranous and ischemic colitis) often had segmental (12%) or diff use (16%) length, with a minimum in the group of focal thickening — 1% in Crohn’s disease. The authors determined a signifi cant diff erence in the length of TC wall thickening in benign and malignant processes (p<0.05). The probability of diagnosis of TC cancer signifi cantly increases with a decrease in the length of the determined thickening of the TC wall to the focal, with an inverse relationship with an increase and a high probability of infl ammatory disease (p<0.01). Thus, the symptom of thickening of the wall of the TC is a marker symptom of diseases of the TC. In our study, the thickening of the TC wall was found in both malignant and benign diseases, with the prevalence of the latter, and a large proportion of infl ammatory diseases in them (p<0.05). In the group of focal thickenings, the leader, not taking into account diverticulitis due to easily recognizable signs of this disease, was TC cancer, which indicates in favor of the high specifi city of the sign (p<0.01). However, the analysis of additional features was crucial in the diff erential diagnosis of TC pathology: the type and nature of contrast enhancement, changes in mesentery, fi ber and adjacent vessels.

      1. Ivashkin V. T. Lapina T. L. red. Gastroenterologiya. Natsionalnoye rukovodstvo. Kratkoye izdaniye: ruk. Moskva. GEOTAR-Media. 2012, 480 p.
      2. Shelygina Yu. A. Koloproktologiya: klinicheskiye rekomendatsii. pod red. Moskva: GEOTAR-Media. 2015, 528 p.
      3. Svistunov. A. A. Bolezni kishechnika: uchebnoye posobiye / A. A. Svistunov. M. A. Osadchuk. Moskva. Laboratoriya znaniy. 2016, 288 p.
      4. Katorkin. S. Bolezn Krona. Med. gaz. 2015, no. 59 (12 avg.), p. 9.
      5. Th omas R. de Wijkerslooth, de Haan M. C., Stoop E. M. et al. Burden of colonoscopy compared to non-cathartic CT-colonography in a colorectal cancer screening programme: randomised controlled trial // Gut. — 2012. — Vol. 61. — Р. 1552–1559.
      6. American Cancer Society. Key Statistics for Colorectal Cancer 2019. [Electronic resource] URL: https://www. cancer.org/cancer/colon-rectal-cancer/about/keystatistics.html (accessed 11.03.19).
      7. Ageyeva L. I. Aleksandrova G. A. Zaychenko N. M. Kirillova G. N. Leonov S. A. Ogryzko E. V. et al. Zdravookhraneniye v Rossii 2017, Moscow. Stat.sb./ Rosstat Publ. 2017. 170 p.
      8. Metodicheskiye rekomendatsii dlya organizatorov zdravookhraneniya. vrachey pervichnogo zvena. vrachey-spetsialistov. Algoritm vyyavleniya onkologicheskikh zabolevaniy u naseleniya Rossiyskoy Federatsii. Moscow. 2009. 38 p.
      9. Razenak Y. Vospalitelnyye zabolevaniya kishechnika: prakticheskoye rukovodstvo. 7-e izd. Moscow, Sankt-Peterburg. 2014. 108 p.
      10. Kostyuchenko L. N., Smirnova O. A., Ugarov I. V. Genetic aspects of infl ammatory bowel disease and treatment using surgical and nutritional correction. Eksp Klin Gastroenterol. 2015;(8):56–63.
      11. Doubeni C.A., Corley D. A., Quinn V. P. et al. Eff ectiveness of screening colonoscopy in reducing the risk of death from right and left colon cancer: a large community-based study. Gut. 2018; 67(2): 291–298
      12. Miyaso H., Iwakawa K., Hamada Y., et al. Ten Cases of Colovesical Fistula due to Sigmoid Diverticulitis. Hiroshima J. Med. Sci. 2015; 64(1–2): 9–13.
      13. Mehtap B.A., Sibel B., Akif A. Th e sensitivity of MR colonography using dark lumen technique for detection of colonic lesions. Turk. J. Gastroenterol. 2014; 25: 271– 278.
      14. Lefere P., Gryspeerdt S., eds. Virtual colonoscopy: A practical guide. Paris: Springer; 2005. 204 p.
      15. Burling D., Halligan S., Slater A., et al. Potentially serious adverse events at CT colonography in symptomatic patients: national survey of the United Kingdom. Radiology. 2006; 239 (2): 464–471.
      16. Burling D., Halligan S., Slater A., et al. Potentially serious adverse events at CT colonography in symptomatic patients: national survey of the United Kingdom. Radiology. 2006; 239 (2): 464–471.
      17. Lichtenstein G., Loft us E., Isaacs K., et al. ACG clinical guideline: management of Chron”s disease in adults. Am. J. Gastroenterol. 2018; 113 (4): 481–517.
      18. Ivashkin V. T. Shelygin Yu. A. Khalif I. L. i dr. Klinicheskiye rekomendatsii Rossiyskoy gastroenterologicheskoy assotsiatsii i assotsiatsii koloproktologov Rossii po diagnostike i lecheniyu bolezni Krona. 2017.
      19. Ivashkin V. T. Shelygin Yu. A. Khalif I. L. i dr. Klinicheskiye rekomendatsii Rossiyskoy gastroenterologicheskoy assotsiatsii i assotsiatsii koloproktologov Rossii po diagnostike i lecheniyu bolezni Krona. 2017.
      20. Lewis R. New C.diffi clie Guidelines Refi ne Diagnosis. Medscape Medical News. WebMD Inc. February 16, 2018. www.medscape.com/viewarticle/892813.
      21. Avunduk C. Manual of Gastroenterology, Diagnosis and Th erapy. Lippincott Williams & Wilkins. 2008. 516 p.
      22. Mayev I. V. Dicheva D. T. Andreyev D. N. Divertikulyarnaya bolezn tolstoy kishki. M.: 2015. 22 p.
      23. Mayev I. V. Dicheva D. T. Andreyev D. N. Divertikulyarnaya bolezn tolstoy kishki. M.: 2015. 22 p.
     


    Full text is published :
    Koshelev E. G., Kitayev S. V., Belyaev G. Yu., Egorov A. A. CT diagnosis of diseases manifested by thickening of the colon wall. Experimental and Clinical Gastroenterology. 2019;162(2): 107–119. (In Russ.) DOI: 10.31146/1682-8658-ecg-162-2-107-119
    Read & Download full text