Submission of the manuscript is online via e-mail
ecgarticle@gmail.com or
cholerez@mail.ru

Tel: +7 903 250 5288

Editorial Correspondence e-mail
gastrossr@gmail.com


Publishing, Subscriptions, Sales and Advertising, Correspondence e-mail
journal@cniig.ru

Tel: +7 917 561 9505

SCImago Journal & Country Rank

    1. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Public Health, Moscow, Russia
    2. I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia

    Abstract:Clostridium diffi cile — Gram-positive microorganism and the frequent causative agent of colitis associated with the use of people with broad-spectrum antibiotics. The developing imbalance of the representatives of the normal fl ora of the large intestine promotes reproduction of the pathogen and is accompanied by the production of protein toxins - single-chain multi-domain toxins TcdA and TcdB and binary toxin CDT. After penetration of TcdA, TcdB and CDT into eukaryotic cells by receptor-mediated endocytosis, the enzymatic domains of TcdA and TcdB modify the regulatory GTPases of the Rho family by monoglucosylation, while the A-subunit of the toxin CDT ADP-ribosylated monomeric molecules, Modifi cation of target proteins leads to their inactivation and the development of a wide range of cellular disorders with signs of infl ammatory lesions of the mucous membrane of the colon. Due to the particularly important role of toxins in the pathogenesis of diff erential infection, these pathogenicity factors are considered as the main components of therapeutic, preventive and diagnostic drugs. On the other hand, the use of C. diffi cile toxins in the scientifi c search tools allows obtaining fundamental data on the mechanisms of physiological and pathological processes in eukaryotic cells.

      1. George RH, Symonds JM, Dimock F, Brown JD, Arabi Y et al. Identifi cation of Clostridium diffi cile as a cause of pseudomembranous colitis. British medical journal 1978;1(6114):695.
      2. Sheptulin A. A. Refractory and relapsing forms of Clostridium diffi cile-associated colitis. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2011;21(2):50–53.
      3. Yarushina Y. N., Kolotova G. B., Rudnov V. A., Bagin V. A. Clostridium diffi cile-associated disease in versatile hospital patient population and risk factors for its development. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2017;27(5):20–28. (In Russ.) https://doi. org/10.22416/1382–4376–2017–27–5–20–28
      4. Lessa FC, Winston LG, McDonald LC. Burden of Clostridium diffi cile infection in the United States. N Engl J Med 2015;372(24):2369–2370.
      5. Carroll KC, Bartlett JG. Biology of Clostridium diffi cile: implications for epidemiology and diagnosis. Annual review of microbiology 2011;65:501–521.
      6. Abt MC, McKenney PT, Pamer EG. Clostridium diffi cile colitis: pathogenesis and host defence. Nat Rev Microbiol 2016;14(10):609–620.
      7. Kuijper EJ, Coignard B, Tull P. Emergence of Clostridium diffi cile-associated disease in North America and Europe. Clin Microbiol Infect 2006;12 Suppl 6:2–18.
      8. Ananthakrishnan AN. Clostridium diffi cile infection: epidemiology, risk factors and management. Nature reviews Gastroenterology & hepatology 2011;8:17–26.
      9. Zakharenko S. M. Epidemiological aspects of c. Diffi cile infection. Experimental and Clinical Gastroenterology Journal. 2017;139(03):67–70.
      10. Belyi Y, Aktories K. Bacterial toxin and eff ector glycosyltransferases. Biochim Biophys Acta 2010;1800(2):134–143.
      11. Jank T, Aktories K. Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends Microbiol 2008;16(5):222–229.
      12. Egerer M, Giesemann T, Jank T, Satchell KJ, Aktories K. Auto-catalytic cleavage of Clostridium diffi cile toxins A and B depends on cysteine protease activity. J Biol Chem 2007;282(35):25314–25321.
      13. Genisyuerek S, Papatheodorou P, Guttenberg G, Schu bert R, Benz R et al. Structural determinants for membrane insertion, pore formation and translocation of Clostridium diffi cile toxin B. Mol Microbiol 2011;79(6):1643–1654.
      14. Olling A, Goy S, Hoff mann F, Tatge H, Just I et al. Th e repetitive oligopeptide sequences modulate cytopathic potency but are not crucial for cellular uptake of Clostridium diffi cile toxin A. PLoS One 2011;6(3): e17623.
      15. von Eichel-Streiber C, Sauerborn M, Kuramitsu HK. Evidence for a modular structure of the homologous repetitive C-terminal carbohydrate-binding sites of Clostridium diffi cile toxins and Streptococcus mutans glucosyltransferases. J Bacteriol 1992;174(20):6707–6710.
      16. Pothoulakis C, Gilbert RJ, Cladaras C, Castagliuolo I, Semenza G et al. Rabbit sucrase-isomaltase contains a functional intestinal receptor for Clostridium diffi cile toxin A. Th e Journal of clinical investigation 1996;98(3):641–649.
      17. Na X, Kim H, Moyer MP, Pothoulakis C, LaMont JT. gp96 is a human colonocyte plasma membrane binding protein for Clostridium diffi cile toxin A. Infect Immun 2008;76(7):2862– 2871.
      18. Aktories K, Schwan C, Jank T. Clostridium diffi cile Toxin Biology. Annual review of microbiology 2017;71:281–307.
      19. Yuan P, Zhang H, Cai C, Zhu S, Zhou Y et al. Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium diffi cile toxin B. Cell research 2015;25(2):157–168.
      20. LaFrance ME, Farrow MA, Chandrasekaran R, Sheng J, Rubin DH et al. Identifi cation of an epithelial cell receptor responsible for Clostridium diffi cile TcdB-induced cytotoxicity. Proc Natl Acad Sci U S A 2015;112(22):7073–7078.
      21. Tao L, Zhang J, Meraner P, Tovaglieri A, Wu X et al. Frizzled proteins are colonic epithelial receptors for C. diffi cile toxin B. Nature 2016;538(7625):350–355.
      22. Papatheodorou P, Zamboglou C, Genisyuerek S, Guttenberg G, Aktories K. Clostridial glucosylating toxins enter cells via clathrin-mediated endocytosis. PLoS One 2010;5(5): e10673.
      23. Barth H, Pfeifer G, Hofmann F, Maier E, Benz R et al. Low pH-induced formation of ion channels by Сlostridium diffi cile toxin B in target cells. J Biol Chem 2001;276(14):10670– 10676.
      24. Voth DE, Ballard JD. Clostridium diffi cile toxins: mechanism of action and role in disease. Clin Microbiol Rev 2005;18(2):247–263.
      25. Just I, Gerhard R. Large clostridial cytotoxins. Reviews of physiology, biochemistry and pharmacology 2004;152:23–47.
      26. Hall A. Rho GTPases and the actin cytoskeleton. Science 1998;279(5350):509–514.
      27. Lemichez E, Aktories K. Hijacking of Rho GTPases during bacterial infection. Experimental cell research 2013;319(15):2329–2336.
      28. Jank T, Belyi Y, Aktories K. Bacterial glycosyltransferase toxins. Cell Microbiol 2015;17(12):1752–1765.
      29. Ng J, Hirota SA, Gross O, Li Y, Ulke-Lemee A et al. Clostridium diffi cile toxin-induced infl ammation and intestinal injury are mediated by the infl ammasome. Gastroenterology 2010;139(2):542–552, 552.e541–543.
      30. Xu H, Yang J, Gao W, Li L, Li P et al. Innate immune sensing of bacterial modifi cations of Rho GTPases by the Pyrin infl ammasome. Nature 2014;513(7517):237–241.
      31. Jafari NV, Kuehne SA, Bryant CE, Elawad M, Wren BW et al. Clostridium diffi cile modulates host innate immunity via toxin-independent and dependent mechanism(s). PLoS One 2013;8(7): e69846.
      32. Lyerly DM, Lockwood DE, Richardson SH, Wilkins TD. Biological activities of toxins A and B of Clostridium diffi cile. Infect Immun 1982;35(3):1147–1150.
      33. Lyerly DM, Krivan HC, Wilkins TD. Clostridium diffi cile: its disease and toxins. Clin Microbiol Rev 1988;1(1):1–18.
      34. Lyerly DM, Saum KE, MacDonald DK, Wilkins TD. Eff ects of Clostridium diffi cile toxins given intragastrically to animals. Infect Immun 1985;47(2):349–352.
      35. Chandrasekaran R, Lacy DB. Th e role of toxins in Clostridium diffi cile infection. FEMS Microbiol Rev 2017;41(6):723–750.
      36. Kim PH, Iaconis JP, Rolfe RD. Immunization of adult hamsters against Clostridium diffi cile-associated ileocecitis and transfer of protection to infant hamsters. Infect Immun 1987;55(12):2984–2992.
      37. Kyne L, Warny M, Qamar A, Kelly CP. Association between antibody response to toxin A and protection against recurrent Clostridium diffi cile diarrhoea. Lancet 2001;357(9251):189–193.
      38. King AM, Mackin KE, Lyras D. Emergence of toxin A-negative, toxin B-positive Clostridium diffi cile strains: epidemiological and clinical considerations. Future Microbiol 2015;10(1):1–4.
      39. Lyras D, O’Connor JR, Howarth PM, Sambol SP, Carter GP et al. Toxin B is essential for virulence of Clostridium diffi cile. Nature 2009;458(7242):1176–1179.
      40. Kuehne SA, Cartman ST, Heap JT, Kelly ML, Cockayne A et al. Th e role of toxin A and toxin B in Clostridium diffi cile infection. Nature 2010;467(7316):711–713.
      41. Barth H, Aktories K, Popoff MR, Stiles BG. Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 2004;68(3):373–402.
      42. Aktories K, Papatheodorou P, Schwan C. Binary Clostridium diffi cile toxin (CDT) – A virulence factor disturbing the cytoskeleton. Anaerobe 2018.
      43. Gerding DN, Johnson S, Rupnik M, Aktories K. Clostridium diffi cile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes 2014;5(1):15–27.
      44. Kuehne SA, Collery MM, Kelly ML, Cartman ST, Cockayne A et al. Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium diffi cile strain. J Infect Dis 2014;209(1):83–86
      45. Papatheodorou P, Aktories K. Receptor-binding and uptake of binary actin-ADP-ribosylating toxins. Current topics in microbiology and immunology 2017;406:119–133.
      46. Papatheodorou P, Carette JE, Bell GW, Schwan C, Guttenberg G et al. Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium diffi cile transferase (CDT). Proc Natl Acad Sci U S A 2011;108(39):16422–16427.
      47. Stubbs S, Rupnik M, Gibert M, Brazier J, Duerden B et al. Production of actin-specifi c ADP-ribosyltransferase (binary toxin) by strains of Clostridium diffi cile. FEMS Microbiol Lett 2000;186(2):307–312.
      48. Cowardin CA, Buonomo EL, Saleh MM, Wilson MG, Burgess SL et al. Th e binary toxin CDT enhances Clostridium diffi cile virulence by suppressing protective colonic eosinophilia. Nature microbiology 2016;1(8):16108.
      49. Schwan C, Stecher B, Tzivelekidis T, van Ham M, Rohde M et al. Clostridium diffi cile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog 2009;5(10): e1000626.
      50. Schwan C, Kruppke AS, Nolke T, Schumacher L, Koch-Nolte F et al. Clostridium diffi cile toxin CDT hijacks microtubule organization and reroutes vesicle traffi c to increase pathogen adherence. Proc Natl Acad Sci U S A 2014;111(6):2313–2318.
      51. Zhang BZ, Cai J, Yu B, Hua Y, Lau CC et al. A DNA vaccine targeting TcdA and TcdB induces protective immunity against Clostridium diffi cile. BMC infectious diseases 2016;16(1):596.
      52. Baliban SM, Michael A, Shammassian B, Mudakha S, Khan AS et al. An optimized, synthetic DNA vaccine encoding the toxin A and toxin B receptor binding domains of Clostridium diffi cile induces protective antibody responses in vivo. Infect Immun 2014;82(10):4080–4091.
      53. Gardiner DF, Rosenberg T, Zaharatos J, Franco D, Ho DD. A DNA vaccine targeting the receptor-binding domain of Clostridium diffi cile toxin A. Vaccine 2009;27(27): 3598–3604.
      54. Quemeneur L, Petiot N, Arnaud-Barbe N, Hessler C, Freda Pietrobon PJ et al. Clostridium diffi cile toxoid vaccine candidate confers broad protection against a range of prevalent circulating strains in a non-clinical setting. Infect Immun 2018.
      55. Hussack G, Tanha J. An update on antibody-based immunotherapies for Clostridium diffi cile infection. Clinical and experimental gastroenterology 2016;9:209–224.
      56. Feher C, Soriano A, Mensa J. A review of experimental and off -Label therapies for Clostridium diffi cile Infection. Infectious diseases and therapy 2017;6(1):1–35.
      57. Kroh HK, Chandrasekaran R, Zhang Z, Rosenthal K, Woods R et al. A neutralizing antibody that blocks delivery of the enzymatic cargo of Clostridium diffi cile toxin TcdB into host cells. J Biol Chem 2017.
      58. Bender KO, Garland M, Ferreyra JA, Hryckowian AJ, Child MA et al. A small-molecule antivirulence agent for treating Clostridium diffi cile infection. Science translational medicine 2015;7(306):306ra148.
      59. Tam J, Beilhartz GL, Auger A, Gupta P, Th erien AG et al. Small molecule inhibitors of Clostridium diffi cile toxin B-induced cellular damage. Chem Biol 2015;22(2):175–185.
      60. Giesemann T, Guttenberg G, Aktories K. Human alpha-defensins inhibit Clostridium diffi cile toxin B. Gastroenterology 2008;134:2049–2058.
      61. Letourneau JJ, Stroke IL, Hilbert DW, Sturzenbecker LJ, Marinelli BA et al. Identifi cation and initial optimization of inhibitors of Clostridium diffi cile (C. diffi cile) toxin B (TcdB). Bioorg Med Chem Lett 2018;28(4):756–761.
      62. Stroke IL, Letourneau JJ, Miller TE, Xu Y, Pechik I et al. Treatment of Clostridium diffi cile Infection with a Small-M olecule Inhibitor of Toxin UDP-Glucose Hydrolysis Activity. Antimicrob Agents Chemother 2018;62(5).
      63. Mills JP, Rao K, Young VB. Probiotics for prevention of Clostridium difficile infection. Curr Opin Gastroenterol 2018;34(1):3–10.
      64. Sukhina M.A., Mikhalevskaya V.I., Achkasov S.I., Safi n A. L. Antagonism of Lactobacteria against Toxigenic Clostridium diffi cile. Coloproctology. 2017, no. S3, pp. 82–83.
      65. Martin MC, Pant N, Ladero V, Gunaydin G, Andersen KK et al. Integrative expression system for delivery of antibody fragments by lactobacilli. Appl Environ Microbiol 2011;77(6):2174–2179.
      66. Andersen KK, Strokappe NM, Hultberg A, Truusalu K, Smidt I et al. Neutralization of Clostridium diffi cile toxin B mediated by engineered lactobacilli producing single domain antibodies. Infect Immun 2015.
      67. Peterbauer C, Maischberger T, Haltrich D. Food-grade gene expression in lactic acid bacteria. Biotechnology journal 2011;6(9):1147–1161.
      68. Song BF, Ju LZ, Li YJ, Tang LJ. Chromosomal insertions in the Lactobacillus casei upp gene that are useful for vaccine expression. Appl Environ Microbiol 2014;80(11):3321–3326.
      69. Belyi IF, Varfolomeeva NA. Construction of a fusion protein carrying antigenic determinants of enteric clostridial toxins. FEMS Microbiol Lett 2003;225(2):325–329.
      70. Chen S, Gu H, Sun C, Wang H, Wang J. Rapid detection of Clostridium diffi cile toxins and laboratory diagnosis of Clostridium diffi cile infections. Infection 2017;45(3):255–262.
      71. Lai H, Huang C, Cai J, Ye J, She J et al. Simultaneous detection and characterization of toxigenic Clostridium diffi cile directly from clinical stool specimens. Frontiers of medicine 2017.
      72. Sukhina M. A., Safi n A. L. Th e actual condition of laboratory diagnostic of clostridium diffi cile-associated diarrhea; the methods of detection of toxigenic strains (review of publications). Russian Clinical Laboratory Diagnostics. 2017;62(10):635–640.
      73. Gulazyan NM, Belaya OF, Belyy YuF, Pak SG. Identifi cation of markers of clostridial toxins in diff erent variants of the course of acute intestinal infection. Russian Clinical Laboratory Diagnostics. 2008(3):46–49.
      74. Varfolomeeva N. A., Shmarova L. A., Belyi Yu. F. A gene- engineering approach towards the production of fragments oft oxins a and в for the usage in the diagnostics and immunotherapy of clostridium diffi cile infections. Mol. Genet. Microbiol. Virol. 2003(2):13–16.
      75. Rupnik M, Janezic S. An Update on Clostridium diffi cile Toxinotyping. J Clin Microbiol 2016;54(1):13–18.
      76. Ostevold K, Melendez AV, Lehmann F, Schmidt G, Aktories K et al. Septin remodeling is essential for the formation of cell membrane protrusions (microtentacles) in detached tumor cells. Oncotarget 2017;8(44):76686–76698.
      77. Czulkies BA, Mastroianni J, Lutz L, Lang S, Schwan C et al. Loss of LSR aff ects epithelial barrier integrity and tumor xenograft growth of CaCo-2 cells. Oncotarget 2017;8(23):37009–37022.
      78. Kern SM, Feig AL. Adaptation of Clostridium diffi cile toxin A for use as a protein translocation system. Biochem Biophys Res Commun 2011;405(4):570–574.
      79. Chu M, Mallozzi MJ, Roxas BP, Bertolo L, Monteiro MA et al. A Clostridium diffi cile cell wall glycopolymer locus infl uences bacterial shape, polysaccharide production and virulence. PLoS Pathog 2016;12(10): e1005946.
      80. Pechine S, Deneve-Larrazet C, Collignon A. Clostridium difficile adhesins. Methods in molecular biology 2016; 1476:91–101.
      81. Dedic E, Alsarraf H, Welner DH, Ostergaard O, Klychnikov OI et al. A novel Fic (Filamentation Induced by cAMP) protein from Clostridium diffi cile reveals an Inhibitory motif-independent adenylylation/AMPylation mechanism. J Biol Chem 2016;291(25):13286–13300.
      82. McKee RW, Aleksanyan N, Garrett EM, Tamayo R. Type IV pili promote Clostridium diffi cile adherence and persistence in a mouse model of infection. Infect Immun 2018.
      83. Schwan C, Stecher B, Tzivelekidis T, van Ham M, Rohde M et al. Clostridium diffi cile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS pathogens 2009;5: e1000626.
     


    Full text is published :
    Belyi Yu. F., Fialkina S. V., Troitskii V. I. Role of toxins in Clostridium diffi cile pathogenicity. Experimental and Clinical Gastroenterology. 2018;160(12): 4–10. (In Russ.) DOI: 10.31146/1682-8658-ecg-160-12-4-10
    Read & Download full text

    1. German National Reference Laboratory for Clostridium diffi cile, Germany
    2. Institute for Medical Microbiology and Hygiene, University of Saarland Medical Centre, Homburg/Saar, Germany
    3. Department for General, Visceral, Vascular, and Paediatric Surgery, Saarland University Hospital and Saarland University Faculty of Medicine, Homburg, Germany
    4. Institute for Laboratory Medicine, Microbiology and Hygiene, Christophorus Kliniken, Coesfeld, Germany
    5. Institute of Hygiene, University of Münster, Münster, Germany

    Keywords: genotyping; splAST; MLST; surveillance; Russia; BI/NAP; whole genome sequencing (WGS); cgMLST

    Abstract: Clostridium diffi cile, recently renamed to Clostridioides diffi cile is the main cause of nosocomial diarrhea in developed nations. In recent years the appearance of so called “hypervirulent” strains like ribotype 027 (RT027) originating from North America has shaped the epidemiology in many parts of the world posing a huge burden on the healthcare system. These hypervirulent strains among others (e. g. RT017) are associated with resistance towards several antibiotics (e. g. fl uoroquinolones) favoring their selection. In Europe, Israel and the American continent RT027 seems to have become the most prevalent strain, while in other parts of the world other RTs dominate. In Far East Asia, RT017 is the predominant strain, while in Australia RT014/020 and RT002 are mostly prevalent. However, for most parts of the world the C. diffi cile world map is rather incomplete, such as in most African countries, Middle East Asia, South Asia but also Eastern Europe including the Russian Federation. Multi-center studies are therefore needed to assess the impact of this pathogen including its molecular epidemiology and corresponding resistance.

      1. Barbut F, Petit JC. Epidemiology of Clostridium difficile-associated infections. Clin Microbiol Infect. 2001;7(8):405–10.
      2. Dubberke ER, Olsen MA. Burden of Clostridium diffi cile on the healthcare system. Clin Infect Dis. 2012;55 Suppl 2: S88–92.
      3. Carter GP, Rood JI, Lyras D. Th e role of toxin A and toxin B in Clostridium diffi cile-associated disease: Past and present perspectives. Gut Microbes. 2010;1(1):58–64.
      4. Gerding DN, Johnson S, Rupnik M, Aktories K. Clostridium diffi cile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes. 2014;5(1):15–27.
      5. Natarajan M, Walk ST, Young VB, Aronoff DM. A clinical and epidemiological review of non-toxigenic Clostridium diffi cile. Anaerobe. 2013;22:1–5.
      6. al Saif N, Brazier JS. Th e distribution of Clostridium diffi cile in the environment of South Wales. J Med Microbiol. 1996;45(2):133–7.
      7. Moono P, Lim SC, Riley TV. High prevalence of toxigenic Clostridium diffi cile in public space lawns in Western Australia. Sci Rep. 2017;7:41196.
      8. Kotila SM, Pitkanen T, Brazier J, Eerola E, Jalava J, Kuusi M, et al. Clostridium diffi cile contamination of public tap water distribution system during a waterborne outbreak in Finland. Scand J Public Health. 2013;41(5):541–5.
      9. Hensgens MP, Keessen EC, Squire MM, Riley TV, Koene MG, de Boer E, et al. Clostridium diffi cile infection in the community: a zoonotic disease? Clin Microbiol Infect. 2012;18(7):635–45.
      10. Vincent C, Manges AR. Antimicrobial use, human gut microbiota and Clostridium diffi cile colonization and infection. Antibiotics (Basel). 2015;4(3):230–53.
      11. Noren T. Clostridium diffi cile and the disease it causes. Methods Mol Biol. 2010;646:9–35.
      12. Furuya-Kanamori L, Marquess J, Yakob L, Riley TV, Paterson DL, Foster NF, et al. Asymptomatic Clostridium diffi cile colonization: epidemiology and clinical implications. BMC infectious diseases. 2015;15:516.
      13. Matsuki S, Ozaki E, Shozu M, Inoue M, Shimizu S, Yamaguchi N, et al. Colonization by Clostridium diffi cile of neonates in a hospital, and infants and children in three day-care facilities of Kanazawa, Japan. Int Microbiol. 2005;8(1):43–8.
      14. Gonzalez-Del Vecchio M, Alvarez-Uria A, Marin M, Alcala L, Martin A, Montilla P, et al. Clinical Signifi cance of Clostridium diffi cile in Children Less Th an 2 Years Old: A Case-Control Study. Pediatr Infect Dis J. 2016;35(3):281–5.
      15. Lawson PA, Citron DM, Tyrrell KL, Finegold SM. Reclassifi cation of Clostridium diffi cile as Clostridioides diffi cile (Hall and O’Toole 1935) Prevot 1938. Anaerobe. 2016;40:95–9.
      16. Kazanowski M, Smolarek S, Kinnarney F, Grzebieniak Z. Clostridium diffi cile: epidemiology, diagnostic and therapeutic possibilities-a systematic review. Tech Coloproctol. 2014;18(3):223–32.
      17. Lawson PA, Rainey FA. Proposal to restrict the genus Clostridium Prazmowski to Clostridium butyricum and related species. Int J Syst Evol Microbiol. 2016;66(2):1009–16.
      18. Bartlett JG, Moon N, Chang TW, Taylor N, Onderdonk AB. Role of Clostridium diffi cile in antibiotic-associated pseudomembranous colitis. Gastroenterology. 1978;75(5):778–82.
      19. Yutin N, Galperin MY. A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ Microbiol. 2013;15(10):2631–41.
      20. Bauer MP, Notermans DW, van Benthem BH, Brazier JS, Wilcox MH, Rupnik M, et al. Clostridium diffi cile infection in Europe: a hospital-based survey. Lancet. 2011;377(9759):63–73
      21. Centers for Disease C, Prevention. Vital signs: preventing Clostridium diffi cile infections. MMWR Morb Mortal Wkly Rep. 2012;61(9):157–62.
      22. Davies KA, Longshaw CM, Davis GL, Bouza E, Barbut F, Barna Z, et al. Underdiagnosis of Clostridium diffi cile across Europe: the European, multicentre, prospective, biannual, point-prevalence study of Clostridium diffi cile infection in hospitalised patients with diarrhoea (EUCLID). Lancet Infect Dis. 2014;14(12):1208–19.
      23. Borren NZ, Ghadermarzi S, Hutfl ess S, Ananthakrishnan AN. Th e emergence of Clostridium diffi cile infection in Asia: A systematic review and meta-analysis of incidence and impact. PLoS One. 2017;12(5): e0176797.
      24. Forrester JD, Cai LZ, Mbanje C, Rinderknecht TN, Wren SM. Clostridium diffi cile infection in low- and middle-human development index countries: a systematic review. Trop Med Int Health. 2017;22(10):1223–32.
      25. Indra A, Huhulescu S, Schneeweis M, Hasenberger P, Kernbichler S, Fiedler A, et al. Characterization of Clostridium difficile isolates using capillary gel electrophoresis-based PCR ribotyping. J Med Microbiol. 2008;57(Pt 11):1377–82.
      26. van Dorp SM, Notermans DW, Alblas J, Gastmeier P, Mentula S, Nagy E, et al. Survey of diagnostic and typing capacity for Clostridium diffi cile infection in Europe, 2011 and 2014. Euro Surveill. 2016;21(29).
      27. Kato H, Yokoyama T, Arakawa Y. Typing by sequencing the slpA gene of Clostridium diffi cile strains causing multiple outbreaks in Japan. J Med Microbiol. 2005;54(Pt 2):167–71.
      28. Killgore G, Th ompson A, Johnson S, Brazier J, Kuijper E, Pepin J, et al. Comparison of seven techniques for typing international epidemic strains of Clostridium diffi cile: restriction endonuclease analysis, pulsed-fi eld gel electrophoresis, PCR-ribotyping, multilocus sequence typing, multilocus variable-number tandem-repeat analysis,amplifi ed fragment length polymorphism, and surface layer protein A gene sequence typing. Journal of clinical microbiology. 2008;46(2):431–7.
      29. Bletz S, Janezic S, Harmsen D, Rupnik M, Mellmann A. Defi ning and evaluating a core genome multilocus sequence typing scheme for genome-wide typing of Clostridium diffi cile. J Clin Microbiol. 2018;56(6).
      30. Knight DR, Elliott B, Chang BJ, Perkins TT, Riley TV. Diversity and Evolution in the Genome of Clostridium diffi cile. Clin Microbiol Rev. 2015;28(3):721–41.
      31. Freeman J, Vernon J, Pilling S, Morris K, Nicholson S, Shearman S, et al. Th e ClosER study: results from a three-year pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium diffi cile ribotypes, 2011–2014. Clin Microbiol Infect. 2017.
      32. Färber J, Illiger S, Berger F, Gärtner B, von Müller L, Lohmann CH, et al. Management of a cluster of Clostridium diffi cile infections among patients with osteoarticular infections. Antimicrobial Resistance & Infection Control. 2017;6(1):22.
      33. Freeman J, Vernon J, Morris K, Nicholson S, Todhunter S, Longshaw C, et al. Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium diffi cile ribotypes. Clin Microbiol Infect. 2015;21(3):248 e9- e16.
      34. Lee JH, Lee Y, Lee K, Riley TV, Kim H. Th e changes of PCR ribotype and antimicrobial resistance of Clostridium diffi cile in a tertiary care hospital over 10 years. J Med Microbiol. 2014;63(Pt 6):819–23.
      35. Pirs T, Ocepek M, Rupnik M. Isolation of Clostridium diffi cile from food animals in Slovenia. J Med Microbiol. 2008;57(Pt 6):790–2.
      36. Alvarez-Perez S, Blanco JL, Pelaez T, Astorga RJ, Harmanus C, Kuijper E, et al. High prevalence of the epidemic Clostridium diffi cile PCR ribotype 078 in Iberian freerange pigs. Res Vet Sci. 2013;95(2):358–61.
      37. Moono P, Putsathit P, Knight DR, Squire MM, Hampson DJ, Foster NF, et al. Persistence of Clostridium diffi cile RT 237 infection in a Western Australian piggery. Anaerobe. 2016;37:62–6.
      38. Alvarez-Perez S, Blanco JL, Harmanus C, Kuijper EJ, Garcia ME. Prevalence and characteristics of Clostridium perfringens and Clostridium diffi cile in dogs and cats attended in diverse veterinary clinics from the Madrid region. Anaerobe. 2017;48:47–55.
      39. Martin-Burriel I, Andres-Lasheras S, Harders F, Mainar- Jaime RC, Ranera B, Zaragoza P, et al. Molecular analysis of three Clostridium diffi cile strain genomes isolated from pig farm-related samples. Anaerobe. 2017;48:224–31.
      40. Stein K, Egan S, Lynch H, Harmanus C, Kyne L, Herra C, et al. PCR-ribotype distribution of Clostridium diffi cile in Irish pigs. Anaerobe. 2017;48:237–41.
      41. Visser M, Sephri S, Olson N, Du T, Mulvey MR, Alfa MJ. Detection of Clostridium diffi cile in retail ground meat products in Manitoba. Can J Infect Dis Med Microbiol. 2012;23(1):28–30.
      42. Lim SC, Foster NF, Elliott B, Riley TV. High prevalence of Clostridium diffi cile on retail root vegetables, Western Australia. J Appl Microbiol. 2018;124(2):585–90.
      43. Metcalf DS, Costa MC, Dew WM, Weese JS. Clostridium diffi cile in vegetables, Canada. Lett Appl Microbiol. 2010;51(5):600–2.
      44. Ghavidel M, Salari Sedigh H, Razmyar J. Isolation of Clostridium difficile and molecular detection of binary and A/B toxins in faeces of dogs. Iran J Vet Res. 2016;17(4):273–6.
      45. Razmyar J, Jamshidi A, Khanzadi S, Kalidari G. Toxigenic Clostridium diffi cile in retail packed chicken meat and broiler fl ocks in northeastern Iran. Iran J Vet Res. 2017;18(4):271–4.
      46. Lawes T, Lopez-Lozano JM, Nebot CA, Macartney G, Subbarao-Sharma R, Wares KD, et al. Eff ect of a national 4C antibiotic stewardship intervention on the clinical and molecular epidemiology of Clostridium diffi cile infections in a region of Scotland: a non-linear time-series analysis. Lancet Infect Dis. 2017;17(2):194–206.
      47. Peng Z, Jin D, Kim HB, Stratton CW, Wu B, Tang YW, et al. Update on antimicrobial resistance in Clostridium diffi cile: Resistance mechanisms and antimicrobial susceptibility testing. J Clin Microbiol. 2017;55(7):1998–2008.
      48. Adler A, Miller-Roll T, Bradenstein R, Block C, Mendelson B, Parizade M, et al. A national survey of the molecular epidemiology of Clostridium diffi cile in Israel: the dissemination of the ribotype 027 strain with reduced susceptibility to vancomycin and metronidazole. Diagn Microbiol Infect Dis. 2015;83(1):21–4.
      49. Baines SD, Wilcox MH. Antimicrobial Resistance and Reduced Susceptibility in Clostridium diffi cile: Potential Consequences for Induction, Treatment, and Recurrence of C. diffi cile Infection. Antibiotics (Basel). 2015;4(3):267–98.
      50. Bauer MP, Notermans DW, van Benthem BH, Brazier JS, Wilcox MH, Rupnik M, et al. Clostridium diffi cile infection in Europe: a hospital-based survey. Lancet (London, England). 2011;377(9759):63–73.
      51. Davies KA, Ashwin H, Longshaw CM, Burns DA, Davis GL, Wilcox MH, et al. Diversity of Clostridium diffi cile PCR ribotypes in Europe: results from the European, multicentre, prospective, biannual, point-prevalence study of Clostridium diffi cile infection in hospitalised patients with diarrhoea (EUCLID), 2012 and 2013. Euro Surveill. 2016;21(29).
      52. Nyc O, Pituch H, Matejkova J, Obuch-Woszczatynski P, Kuijper EJ. Clostridium diffi cile PCR ribotype 176 in the Czech Republic and Poland. Lancet. 2011;377(9775):1407.
      53. van Dorp SM, Kinross P, Gastmeier P, Behnke M, Kola A, Delmee M, et al. Standardised surveillance of Clostridium diffi cile infection in European acute care hospitals: a pilot study, 2013. Euro Surveill. 2016;21(29).
      54. Krutova M, Matejkova J, Kuijper EJ, Drevinek P, Nyc O. Clostridium diffi cile PCR ribotypes 001 and 176 – the common denominator of C. diffi cile infection epidemiology in the Czech Republic, 2014. Euro Surveill. 2016;21(29).
      55. Baldan R, Trovato A, Bianchini V, Biancardi A, Cichero P, Mazzotti M, et al. Clostridium diffi cile PCR ribotype 018, a successful epidemic genotype. J Clin Microbiol. 2015;53(8):2575–80.
      56. Mentula S, Kotila SM, Lyytikainen O, Ibrahem S, Ollgren J, Virolainen A. Clostridium diffi cile infections in Finland, 2008–2015: trends, diagnostics and ribotypes. Eur J Clin Microbiol Infect Dis. 2017;36(10):1939–45.
      57. Isidro J, Santos A, Nunes A, Borges V, Silva C, Vieira L, et al. Imipenem resistance in Clostridium diffi cile ribotype 017, Portugal. Emerg Infect Dis. 2018;24(4):741–5.
      58. Cheng JW, Xiao M, Kudinha T, Xu ZP, Hou X, Sun LY, et al. Th e fi rst two Clostridium diffi cile ribotype 027/ ST1 isolates identifi ed in Beijing, China – an emerging problem or a neglected threat? Sci Rep. 2016;6:18834.
      59. Cheng VC, Yam WC, Chan JF, To KK, Ho PL, Yuen KY. Clostridium diffi cile ribotype 027 arrives in Hong Kong. Int J Antimicrob Agents. 2009;34(5):492–3.
      60. Lim PL, Ling ML, Lee HY, Koh TH, Tan AL, Kuijper EJ, et al. Isolation of the fi rst three cases of Clostridium diffi cile polymerase chain reaction ribotype 027 in Singapore. Singapore Med J. 2011;52(5):361–4.
      61. Collins DA, Hawkey PM, Riley TV. Epidemiology of Clostridium diffi cile infection in Asia. Antimicrob Resist Infect Control. 2013;2(1):21.
      62. Huang H, Weintraub A, Fang H, Wu S, Zhang Y, Nord CE. Antimicrobial susceptibility and heteroresistance in Chinese Clostridium diffi cile strains. Anaerobe. 2010;16(6):633–5.
      63. Liu XS, Li WG, Zhang WZ, Wu Y, Lu JX. Molecular characterization of Clostridium diffi cile isolates in China from 2010 to 2015. Front Microbiol. 2018;9:845.
      64. Jin D, Luo Y, Huang C, Cai J, Ye J, Zheng Y, et al. Molecular epidemiology of Clostridium diffi cile infection in hospitalized patients in Eastern China. J Clin Microbiol. 2017;55(3):801–10.
      65. Cheng VC, Yam WC, Lam OT, Tsang JL, Tse EY, Siu GK, et al. Clostridium diffi cile isolates with increased sporulation: emergence of PCR ribotype 002 in Hong Kong. Eur J Clin Microbiol Infect Dis. 2011;30(11):1371–81.
      66. Cairns MD, Preston MD, Hall CL, Gerding DN, Hawkey PM, Kato H, et al. Comparative genome analysis and global phylogeny of the toxin variant Clostridium diffi cile PCR ribotype 017 reveals the evolution of two independent sublineages. J Clin Microbiol. 2017;55(3):865–76.
      67. Kim H, Jeong SH, Roh KH, Hong SG, Kim JW, Shin MG, et al. Investigation of toxin gene diversity, molecular epidemiology, and antimicrobial resistance of Clostridium diffi cile isolated from 12 hospitals in South Korea. Korean J Lab Med. 2010;30(5):491–7.
      68. Kim J, Kang JO, Kim H, Seo MR, Choi TY, Pai H, et al. Epidemiology of Clostridium diffi cile infections in a tertiary-care hospital in Korea. Clin Microbiol Infect. 2013;19(6):521–7.
      69. Kim H, Lee Y, Moon HW, Lim CS, Lee K, Chong Y. Emergence of Clostridium diffi cile ribotype 027 in Korea. Korean J Lab Med. 2011;31(3):191–6.
      70. Riley TV, Kimura T. Th e Epidemiology of Clostridium diffi cile infection in Japan: A systematic review. Infect Dis Th er. 2018;7(1):39–70.
      71. Kato H, Ito Y, van den Berg RJ, Kuijper EJ, Arakawa Y. First isolation of Clostridium diffi cile 027 in Japan. Euro Surveill. 2007;12(1): E070111 3.
      72. Putsathit P, Maneerattanaporn M, Piewngam P, Kiratisin P, Riley TV. Prevalence and molecular epidemiology of Clostridium diffi cile infection in Th ailand. New Microbes New Infect. 2017;15:27–32.
      73. Collins DA, Gasem MH, Habibie TH, Arinton IG, Hendriyanto P, Hartana AP, et al. Prevalence and molecular epidemiology of Clostridium diffi cile infection in Indonesia. New Microbes New Infect. 2017;18:34–7.
      74. Riley TV, Collins DA, Karunakaran R, Kahar MA, Adnan A, Hassan SA, et al. High prevalence of toxigenic and nontoxigenic Clostridium diffi cile strains in Malaysia. J Clin Microbiol. 2018;56(6).
      75. Hung YP, Huang IH, Lin HJ, Tsai BY, Liu HC, Liu HC, et al. Predominance of Clostridium diffi cile ribotypes 017 and 078 among toxigenic clinical isolates in Southern Taiwan. PLoS One. 2016;11(11): e0166159.
      76. Vaishnavi C, Singh M, Mahmood S, Kochhar R. Prevalence and molecular types of Clostridium diffi cile isolates from faecal specimens of patients in a tertiary care centre. J Med Microbiol. 2015;64(11):1297–304.
      77. Jamal WY, Rotimi VO. Surveillance of antibiotic resistance among hospital- and community-acquired toxigenic Clostridium diffi cile isolates over 5-year period in Kuwait. PLoS One. 2016;11(8): e0161411.
      78. Jamal W, Pauline E, Rotimi V. A prospective study of community-associated Clostridium diffi cile infection in Kuwait: Epidemiology and ribotypes. Anaerobe. 2015;35(Pt B):28–32.
      79. Berger FK, Rasheed SS, Araj GF, Mahfouz R, Rimmani HH, Karaoui WR, et al. Molecular characterization, toxin detection and resistance testing of human clinical Clostridium diffi cile isolates from Lebanon. Int J Med Microbiol. 2018;308(3):358–63.
      80. Khoshdel A, Habibian R, Parvin N, Doosti A, Famouri F, Eshraghi A, et al. Molecular characterization of nosocomial Clostridium diffi cile infection in pediatric ward in Iran. Springerplus. 2015;4:627.
      81. Jalali M, Khorvash F, Warriner K, Weese JS. Clostridium diffi cile infection in an Iranian hospital. BMC Res Notes. 2012;5:159.
      82. Pepin J, Valiquette L, Cossette B. Mortality attributable to nosocomial Clostridium diffi cile-associated disease during an epidemic caused by a hypervirulent strain in Quebec. CMAJ. 2005;173(9):1037–42.
      83. Tenover FC, Akerlund T, Gerding DN, Goering RV, Bostrom T, Jonsson AM, et al. Comparison of strain typing results for Clostridium diffi cile isolates from North America. J Clin Microbiol. 2011;49(5):1831–7.
      84. Davila LP, Garza-Gonzalez E, Rodriguez-Zulueta P, Morfi n- Otero R, Rodriguez-Noriega E, Vilar-Compte D, et al. Increasing rates of Clostridium diffi cile infection in Mexican hospitals. Braz J Infect Dis. 2017;21(5):530–4.
      85. Aguayo C, Flores R, Levesque S, Araya P, Ulloa S, Lagos J, et al. Rapid spread of Clostridium diffi cile NAP1/027/ST1 in Chile confi rms the emergence of the epidemic strain in Latin America. Epidemiol Infect. 2015;143(14):3069–73.
      86. Jimenez A, Araya R, Paniagua D, Camacho-Mora Z, Du T, Golding GR, et al. Molecular epidemiology and antimicrobial resistance of Clostridium diffi cile in a national geriatric hospital in Costa Rica. J Hosp Infect. 2018;99(4):475–80.
      87. Quesada-Gomez C, Lopez-Urena D, Acuna-Amador L, Villalobos-Zuniga M, Du T, Freire R, et al. Emergence of an outbreak-associated Clostridium diffi cile variant with increased virulence. J Clin Microbiol. 2015;53(4):1216–26.
      88. Costa CL, Mano de Carvalho CB, Gonzalez RH, Gifoni MAC, Ribeiro RA, Quesada-Gomez C, et al. Molecular epidemiology of Clostridium diffi cile infection in a Brazilian cancer hospital. Anaerobe. 2017;48:232–6.
      89. Balassiano IT, dos Santos-Filho J, Vital-Brazil JM, Nouer SA, Souza CR, Brazier JS, et al. Detection of cross-infection associated to a Brazilian PCR-ribotype of Clostridium difficile in a university hospital in Rio de Janeiro, Brazil. Antonie Van Leeuwenhoek. 2011;99(2):249–55.
      90. Monteiro Ade A, Pires RN, Persson S, Rodrigues Filho EM, Pasqualotto AC. A search for Clostridium diffi cile ribotypes 027 and 078 in Brazil. Braz J Infect Dis. 2014;18(6):672–4.
      91. Lopez-Urena D, Quesada-Gomez C, Miranda E, Fonseca M, Rodriguez-Cavallini E. Spread of epidemic Clostridium diffi cile NAP1/027 in Latin America: case reports in Panama. J Med Microbiol. 2014;63(Pt 2):322–4.
      92. Lim SK, Stuart RL, Mackin KE, Carter GP, Kotsanas D, Francis MJ, et al. Emergence of a ribotype 244 strain of Clostridium diffi cile associated with severe disease and related to the epidemic ribotype 027 strain. Clin Infect Dis. 2014;58(12):1723–30.
      93. Riley TV, Th ean S, Hool G, Golledge CL. First Australian isolation of epidemic Clostridium diffi cile PCR ribotype 027. Med J Aust. 2009;190(12):706–8.
      94. Richards M, Knox J, Elliott B, Mackin K, Lyras D, Waring LJ, et al. Severe infection with Clostridium diffi cile PCR ribotype 027 acquired in Melbourne, Australia. Med J Aust. 2011;194(7):369–71.
      95. Knight DR, Giglio S, Huntington PG, Korman TM, Kotsanas D, Moore CV, et al. Surveillance for antimicrobial resistance in Australian isolates of Clostridium diffi cile, 2013–14. J Antimicrob Chemother. 2015;70(11):2992–9.
      96. D.M. DA, Heff ernan H, Dervan A, Bakker S, Freeman JT, Bhally H, et al. Severe Clostridium diffi cile infection in New Zealand associated with an emerging strain, PCR-ribotype 244 NZMJ 2013;126(1280):10–4.
      97. Djebbar A, Sebaihia M, Kuijper E, Harmanus C, Sanders I, Benbraham N, et al. First molecular characterisation and PCR ribotyping of Clostridium diffi cile strains isolated in two Algerian Hospitals. J Infect Dev Ctries. 2018;12(1):015–21.
      98. Rajabally N, Kullin B, Ebrahim K, Brock T, Weintraub A, Whitelaw A, et al. A comparison of Clostridium diffi cile diagnostic methods for identifi cation of local strains in a South African centre. J Med Microbiol. 2016.
      99. Janssen I, Cooper P, Gunka K, Rupnik M, Wetzel D, Zimmermann O, et al. High prevalence of nontoxigenic Clostridium difficile isolated from hospitalized and non-hospitalized individuals in rural Ghana. Int J Med Microbiol. 2016;306(8):652–6.
      100. Seugendo M, Mshana SE, Hokororo A, Okamo B, Mirambo MM, von Müller L, et al. Clostridium diffi cile infections among adults and children in Mwanza/ Tanzania: is it an underappreciated pathogen among immunocompromised patients in sub-Saharan Africa? New Microbes New Infect. 2015;8:99–102.
     


    Full text is published :
    Berger F., Kuhenuri-Chami N., von Müller L., Mellmann A., Gärtner B.. Clostridium diffi cile — from Bacillus diffi cilis to Clostridioides diffi cile, global molecular epidemiology and possible implications for the Russian Federation. Experimental and Clinical Gastroenterology. 2018;160(12): 11–18. (In Russ.) DOI: 10.31146/1682-8658-ecg-160-12-11-18
    Read & Download full text