Submission of the manuscript is online via e-mail
ecgarticle@gmail.com or
cholerez@mail.ru

Tel: +7 917 561 9505

Editorial Correspondence e-mail
gastrossr@gmail.com


Publishing, Subscriptions, Sales and Advertising, Correspondence e-mail
journal@cniig.ru

Tel: +7 917 561 9505

Coronavirus disease (COVID-19) Situation dashboard

This interactive dashboard/map provides the latest global numbers and numbers by country of COVID-19 cases on a daily basis.

SCImago Journal & Country Rank

    1. СЗГМУ им. И. И. Мечникова, Санкт-Петербург (Санкт-Петербург, Россия)
    2. Гос. НИИ ОЧБ ФМБА России (Санкт-Петербург, Россия)
    3. Институт экспериментальной медицины (Санкт-Петербург, Россия)
    4. ПСПбГМУ им. акад. И. П. Павлова (Санкт-Петербург, Россия)

    Ключевые слова:бутират,дисбиоз толстой кишки,микробиота кишечника,целиакия,язвенный колит

    Резюме:Цель исследования: изучить количественный состав некоторых представителей симбиотической микробиоты толстой кишки и выявить особенности дисбиоза кишечника у пациентов с язвенным колитом и целиакией. Материалы и методы: В исследование было включено 40 пациентов с активным язвенным колитом (легкая и среднетяжелая атаки), получающих терапию препаратами месалазина, 43 пациента с целиакией, находящихся на безглютеновой диете, и 42 практически здоровых добровольца. Для количественного определения микроорганизмов ДНК, выделенную из образцов кала, подвергали полимеразной цепной реакции (ПЦР) в режиме реального времени. Результаты: У пациентов с язвенным колитом, как и у больных целиакией, количество Faecalibacterium prausnitzii было значимо меньше, чем у здоровых лиц (p = 0,043 и p = 0,036 соответственно). Общее количество бутират-продуцирующих бактерий, имеющих ген бутирил-КоA: ацетат-КоA-трансферазы (but), было снижено (по сравнению со здоровыми добровольцами) только у пациентов с язвенным колитом (p = 0,048). Несмотря на то, что общее количество бактероидов между группами пациентов не различалось, Bacteroides thetaiotaomicron существенно реже встречался у пациентов с язвенным колитом, чем у здоровых лиц (p = 0,016). Отсутствие Bacteroides thetaiotaomicron в кале или его уровень ниже порога обнаружения были значимо связаны с язвенным колитом (ОШ = 6,30; 95% ДИ: 1,33 - 29,95). У пациентов с целиакией уровень Bifidobacterium spp. был значимо снижен по сравнению как со здоровыми добровольцами, так и с больными язвенным колитом (p = 0,022 и p = 0,046 соответственно). Как при язвенном колите, так и при целиакии таксономический дисбиоз характеризовался повышенным отношением Bacteroides fragilis spp. к Faecalibacterium prausnitzii по сравнению со здоровыми лицами (p < 0,05 в обоих случаях). Выводы: Повышенное отношение Bacteroides fragilis к Faecalibacterium prausnitzii может рассматриваться в качестве потенциального биомаркера дисбиоза кишечника провоспалительного типа. Уменьшение численности бутират-продуцирующих бактерий подтверждает целесообразность восполнения дефицита масляной кислоты при обоих заболеваниях путем дополнительного назначения препаратов масляной кислоты, пробиотиков на основе бутират-продуцирующих бактерий, бутирогенных пребиотиков и метабиотиков. Bacteroides thetaiotaomicron может играть защитную роль в организме человека, возможно, предохраняя его от развития воспалительных заболеваний кишечника. Снижение уровня Bifidobacterium spp. у пациентов с целиакией может свидетельствовать о защитной функции некоторых видов бифидобактерий и целесообразности применения пробиотиков на основе бифидобактерий и пребиотиков инулинового типа.

      1. Lederberg J. Infectious history. Science. 2000 Apr 14;288 (5464):287 - 293.
      2. Nicholson JK, Holmes E, Lindon JC, Wilson ID. The challenges of modeling mammalian biocomplexity. Nat Biotechnol. 2004 Oct; 22 (10):1268 - 74.
      3. Goodacre R. Metabolomics of a superorganism. J Nutr. 2007 Jan; 137 (1 Suppl):259S-266S.
      4. Rosenberg E, Sharon G, Zilber-Rosenberg I. The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework. Environ Microbiol. 2009 Dec; 11 (12):2959 - 62.
      5. Sleator R. D. The human superorganism - of microbes and men. Med Hypotheses. 2010 Feb; 74 (2):214 - 5.
      6. van Duynhoven J, Vaughan EE, Jacobs DM, Kemperman RA, van Velzen EJ, Gross G, Roger LC, Possemiers S, Smilde AK, Doré J, Westerhuis JA, Van de Wiele T. Metabolic fate of polyphenols in the human superorganism. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4531 - 8.
      7. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE. Metagenomic analysis of the human distal gut microbiome. Science. 2006 Jun 2;312 (5778):1355 - 9.
      8. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, at all human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010 Mar 4;464 (7285):59 - 65.
      9. Bäckhed F, Fraser CM, Ringel Y, Sanders ME, Sartor RB, Sherman PM, Versalovic J, Young V, Finlay BB. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe. 2012 Nov 15;12 (5):611 - 22. doi: 10.1016/j. chom. 2012.10.012.
      10. Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev. 2014 Sep; 38 (5):996 - 1047. doi: 10.1111/1574 - 6976.12075.
      11. Harmsen HJ, de Goffau MC. The Human Gut Microbiota. Adv Exp Med Biol. 2016;902:95 - 108. doi: 10.1007/978-3-319-31248-4_7.
      12. Guarner F, Malagelada JR. Gut flora in health and disease. Lancet. 2003 Feb 8;361 (9356):512 - 9.
      13. Guarnier F. The enteric microbiota. In: Granger DN, Granger J, Morgan & Claypool Life Sciences, eds. Colloquium Series on Integrated Systems Physiology: From Molecule to Function to Disease. USA: Morgan & Clay pool Life Sciences Publishers, 2011: 1 - 77.
      14. Prakash S, Rodes L, Coussa-Charley M, Tomaro-Duchesneau C. Gut microbiota: next frontier in understanding human health and development of biotherapeutics. Biologics. 2011;5:71 - 86. doi: 10.2147/BTT. S19099. Epub 2011 Jul 11.
      15. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010 Jul; 90 (3):859 - 904.
      16. Guinane CM, Cotter PD. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therap Adv Gastroenterol. 2013 Jul; 6 (4):295 - 308. doi: 10.1177/1756283X13482996.
      17. Philpott H, Gibson P, Thien F. Irritable bowel syndrome - An inflammatory disease involving mast cells. Asia Pac Allergy. 2011 Apr; 1 (1):36 - 42.
      18. Clarke G., Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2013 Jun; 18 (6):666 - 73.
      19. Kennedy P. J., Cryan JF, Dinan TG, Clarke G. Irritable bowel syndrome: a microbiome-gut-brain axis disorder? World J Gastroenterol. 2014 Oct 21;20 (39):14105 - 25.
      20. DuPont AW, DuPont HL. The intestinal microbiota and chronic disorders of the gut. Nat Rev Gastroenterol Hepatol. 2011 Aug 16;8 (9):523 - 31. doi: 10.1038/nrgastro. 2011.133.
      21. Sartor RB. Gut microbiota: Diet promotes dysbiosis and colitis in susceptible hosts. Nat Rev Gastroenterol Hepatol. 2012 Oct; 9 (10):561 - 2. doi: 10.1038/nrgastro. 2012.157.
      22. Quigley EM, Monsour HP. The Gut Microbiota and Nonalcoholic Fatty Liver Disease. Semin Liver Dis. 2015 Aug; 35 (3):262 - 9. doi: 10.1055/s-0035 - 1562946.
      23. Keren N, Konikoff FM, Paitan Y, Gabay G, Reshef L, Naftali T, Gophna U. Interactions between the intestinal microbiota and bile acids in gallstones patients. Environ Microbiol Rep. 2015 Dec; 7 (6):874 - 80. doi: 10.1111/1758 - 2229.12319.
      24. Verdu EF, Galipeau HJ, Jabri B. Novel players in coeliac disease pathogenesis: role of the gut microbiota. Nat Rev Gastroenterol Hepatol. 2015 Sep; 12 (9):497 - 506. doi: 10.1038/nrgastro. 2015.90.
      25. Marasco G, Di Biase AR, Schiumerini R, Eusebi LH, Iughetti L, Ravaioli F, Scaioli E, Colecchia A, Festi D. Gut Microbiota and Celiac Disease. Dig Dis Sci. 2016 Jun; 61 (6):1461 - 72. doi: 10.1007/s10620-015-4020-2.
      26. Hering NA, Fromm M, Schulzke JD. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. J Physiol. 2012 Mar 1;590 (Pt 5):1035 - 44. doi: 10.1113/jphysiol. 2011.224568.
      27. Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol. 2014 May; 14 (5):329 - 42. doi: 10.1038/nri3661.
      28. Круис В., Ситкин С. И. Заживление слизистой оболочки при воспалительных заболеваниях кишечника: Влияние месалазина и различных механизмов его действия на заживление слизистой оболочки кишечника при язвенном колите. - М.: Форте принт, 2013. - 36 с.
      29. Fujita H, Eishi Y, Ishige I, Saitoh K, Takizawa T, Arima T, Koike M. Quantitative analysis of bacterial DNA from Mycobacteria spp., Bacteroides vulgatus, and Escherichia coli in tissue samples from patients with inflammatory bowel diseases. J Gastroenterol. 2002;37 (7):509 - 16.
      30. Fallone CA, Bitton A. Is IBD caused by a Helicobacter pylori infection? Inflamm Bowel Dis. 2008 Oct; 14 Suppl 2: S37-8. doi: 10.1002/ibd. 20552.
      31. Lidar M, Langevitz P, Shoenfeld Y. The role of infection in inflammatory bowel disease: initiation, exacerbation and protection. Isr Med Assoc J. 2009 Sep; 11 (9):558 - 63.
      32. Hansen R, Thomson JM, El-Omar EM, Hold GL. The role of infection in the aetiology of inflammatory bowel disease. J Gastroenterol. 2010 Mar; 45 (3):266 - 76. doi: 10.1007/s00535-009-0191-y.
      33. Timms VJ, Daskalopoulos G, Mitchell HM, Neilan BA. The Association of Mycobacterium avium subsp. paratuberculosis with Inflammatory Bowel Disease. PLoS One. 2016 Feb 5;11 (2):e0148731. doi: 10.1371/journal. pone. 0148731.
      34. Пак С. Г., Малов В. А., Горобченко А. Н. Инфекционные болезни: расширяя традиционные представления // Терапевтический архив. - 2003. - Том 75, № 11. - С. 5 - 10.
      35. Friswell M, Campbell B, Rhodes J. The role of bacteria in the pathogenesis of inflammatory bowel disease. Gut Liver. 2010 Sep; 4 (3):295 - 306. doi: 10.5009/gnl. 2010.4.3.295.
      36. Mann EA, Saeed SA. Gastrointestinal infection as a trigger for inflammatory bowel disease. Curr Opin Gastroenterol. 2012 Jan; 28 (1):24 - 9. doi: 10.1097/MOG. 0b013e32834c453e.
      37. Шкарин В. В., Ковалишена О. В. Вопросы этиологии новых инфекций // Медицина в Кузбассе. - 2013. - Том 12, № 2. - С. 13 - 21.
      38. Miner-Williams WM, Moughan PJ. Intestinal barrier dysfunction: implications for chronic inflammatory conditions of the bowel. Nutr Res Rev. 2016 Jun; 29 (1):40 - 59. doi: 10.1017/S0954422416000019.
      39. Macfarlane S, Furrie E, Cummings JH, Macfarlane GT. Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis. Clin Infect Dis. 2004 Jun 15;38 (12):1690 - 9.
      40. Frank DN, Robertson CE, Hamm CM, Kpadeh Z, Zhang T, Chen H, Zhu W, Sartor RB, Boedeker EC, Harpaz N, Pace NR, Li E. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis. 2011 Jan; 17 (1):179 - 84. doi: 10.1002/ibd. 21339.
      41. Duboc H, Rajca S, Rainteau D, Benarous D, Maubert MA, Quervain E, Thomas G, Barbu V, Humbert L, Despras G, Bridonneau C, Dumetz F, Grill JP, Masliah J, Beaugerie L, Cosnes J, Chazouillères O, Poupon R, Wolf C, Mallet JM, Langella P, Trugnan G, Sokol H, Seksik P. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut. 2013 Apr; 62 (4):531 - 9. doi: 10.1136/gutjnl-2012 - 302578.
      42. Kabeerdoss J, Sankaran V, Pugazhendhi S, Ramakrishna BS. Clostridium leptum group bacteria abundance and diversity in the fecal microbiota of patients with inflammatory bowel disease: a case-control study in India. BMC Gastroenterol. 2013 Jan 26;13:20. doi: 10.1186/1471-230X-13 - 20.
      43. Rajilić-Stojanović M, Shanahan F, Guarner F, de Vos WM. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm Bowel Dis. 2013 Mar; 19 (3):481 - 8. doi: 10.1097/MIB. 0b013e31827fec6d.
      44. Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014 May; 146 (6):1489 - 99. doi: 10.1053/j. gastro. 2014.02.009.
      45. Matsuoka K, Kanai T. The gut microbiota and inflammatory bowel disease. Semin Immunopathol. 2015 Jan; 37 (1):47 - 55. doi: 10.1007/s00281-014-0454-4.
      46. Fukata M, Arditi M. The role of pattern recognition receptors in intestinal inflammation. Mucosal Immunol. 2013 May; 6 (3):451 - 63. doi: 10.1038/mi. 2013.13.
      47. Swidsinski A, Loening-Baucke V, Herber A. Mucosal flora in Crohn’s disease and ulcerative colitis - an overview. J Physiol Pharmacol. 2009 Dec; 60 Suppl 6:61 - 71.
      48. Chen SJ, Liu XW, Liu JP, Yang XY, Lu FG. Ulcerative colitis as a polymicrobial infection characterized by sustained broken mucus barrier. World J Gastroenterol. 2014 Jul 28;20 (28):9468 - 75. doi: 10.3748/wjg. v20.i28.9468.
      49. Sartor RB, Wu GD. Roles for Intestinal Bacteria, Viruses, and Fungi in Pathogenesis of Inflammatory Bowel Diseases and Therapeutic Approaches. Gastroenterology. 2016 Oct 18. pii: S0016-5085 (16) 35235 - 0. doi: 10.1053/j. gastro. 2016.10.012.
      50. Ситкин С. И., Ткаченко Е. И., Вахитов Т. Я. Метаболический дисбиоз кишечника и его биомаркеры // Экспериментальная и клиническая гастроэнтерология. - 2015. - № 12 (124). - С. 6 - 29.
      51. Huda-Faujan N, Abdulamir AS, Fatimah AB, Anas OM, Shuhaimi M, Yazid AM, Loong YY. The impact of the level of the intestinal short chain fatty acids in inflammatory bowel disease patients versus healthy subjects. Open Biochem J. 2010 May 13;4:53 - 8. doi: 10.2174/1874091X01004010053.
      52. Selmer T, Andrei PI. p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur J Biochem. 2001 Mar; 268 (5):1363 - 72.
      53. Marquet P, Duncan SH, Chassard C, Bernalier-Donadille A, Flint HJ. Lactate has the potential to promote hydrogen sulphide formation in the human colon. FEMS Microbiol Lett. 2009 Oct; 299 (2):128 - 34. doi: 10.1111/j. 1574 - 6968.2009.01750.x.
      54. Rowan FE, Docherty NG, Coffey JC, O’Connell PR. Sulphate-reducing bacteria and hydrogen sulphide in the aetiology of ulcerative colitis. Br J Surg. 2009 Feb; 96 (2):151 - 8. doi: 10.1002/bjs. 6454.
      55. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, Zheng L, Gardet A, Tong Z, Jany SS, Corr SC, Haneklaus M, Caffrey BE, Pierce K, Walmsley S, Beasley FC, Cummins E, Nizet V, Whyte M, Taylor CT, Lin H, Masters SL, Gottlieb E, Kelly VP, Clish C, Auron PE, Xavier RJ, O’Neill LA. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013 Apr 11;496 (7444):238 - 42. doi: 10.1038/nature11986.
      56. Ситкин С. И., Ткаченко Е. И., Вахитов Т. Я., Орешко Л. С., Жигалова Т. Н. Метаболом сыворотки крови по данным газовой хроматографии - масс-спектрометрии (ГХ-МС) у пациентов с язвенным колитом и больных целиакией // Экспериментальная и клиническая гастроэнтерология. - 2013. - № 12. - С. 44 - 57.
      57. Sitkin S., Vakhitov T., Tkachenko E., Oreshko L., Zhigalova T. Metabolic dysbiosis concept and its biomarkers in ulcerative colitis and celiac disease. J Crohns Colitis. 2015;9 (Suppl 1):S437. doi: 10.1093/ecco-jcc/jju027.829.
      58. Корниенко Е. А. Роль кишечной микробиоты в развитии целиакии // Медицинский совет. - 2013. - № 1. - С. 44 - 51.
      59. De Palma G, Nadal I, Collado MC, Sanz Y. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br J Nutr. 2009 Oct; 102 (8):1154 - 60. doi: 10.1017/S0007114509371767.
      60. Brown K, DeCoffe D, Molcan E, Gibson DL. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients. 2012 Aug; 4 (8):1095 - 119. doi: 10.3390/nu4081095.
      61. Golfetto L, de Senna FD, Hermes J, Beserra BT, França Fda S, Martinello F. Lower bifidobacteria counts in adult patients with celiac disease on a gluten-free diet. Arq Gastroenterol. 2014 Apr-Jun; 51 (2):139 - 43.
      62. Ситкин С. И., Ткаченко Е. И., Вахитов Т. Я., Орешко Л. С., Жигалова Т. Н., Авалуева Е. Б. Метаболом сыворотки крови и микробиота кишечника при язвенном колите и целиакии // Вестник Северо-Западного государственного медицинского университета им. И. И. Мечникова. - 2014. - Том 6, № 3. - С. 12 - 22.
      63. Lorenzo Pisarello MJ, Vintiñi EO, González SN, Pagani F, Medina MS. Decrease in lactobacilli in the intestinal microbiota of celiac children with a gluten-free diet, and selection of potentially probiotic strains. Can J Microbiol. 2015 Jan; 61 (1):32 - 7. doi: 10.1139/cjm-2014 - 0472.
      64. Di Cagno R, Rizzello CG, Gagliardi F, Ricciuti P, Ndagijimana M, Francavilla R, Guerzoni ME, Crecchio C, Gobbetti M, De Angelis M. Different fecal microbiotas and volatile organic compounds in treated and untreated children with celiac disease. Appl Environ Microbiol. 2009 Jun; 75 (12):3963 - 71. doi: 10.1128/AEM. 02793 - 08.
      65. Di Cagno R, De Angelis M, De Pasquale I, Ndagijimana M, Vernocchi P, Ricciuti P, Gagliardi F, Laghi L, Crecchio C, Guerzoni ME, Gobbetti M, Francavilla R. Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization. BMC Microbiol. 2011 Oct 4;11:219. doi: 10.1186/1471-2180-11-219.
      66. Calabrò A, Gralka E, Luchinat C, Saccenti E, Tenori L. A metabolomic perspective on coeliac disease. Autoimmune Dis. 2014;2014:756138. doi: 10.1155/2014/756138.
      67. Sitkin S., Tkachenko E., Oreshko L. Serum metabolome in celiac disease is influenced by gut microbiota // Abstracts of the Falk Symposium 193 «Celiac Disease and Other Small Bowel Disorders» (Amsterdam, The Netherlands, September 5 - 6, 2014). - 2014. - Poster Abstract 95.
      68. Всероссийский консенсус по диагностике и лечению целиакии у детей и взрослых / Парфенов А. И., Маев И. В., Баранов А. А., Бакулин И. Г., Сабельникова Е. А., Крумс Л. М., Бельмер С. В., Боровик Т. Э., Захарова И. Н., Дмитриева Ю. А., Рославцева Е. А., Корниенко Е. А., Хавкин А. И., Потапов А. С., Ревнова М. О., Мухина Ю. Г., Щербаков П. Л., Федоров Е. Д., Белоусова Е. А., Халиф И. Л., и др. // Альманах клинической медицины. - 2016; 44 (6): 661 - 688.
      69. de Sousa Moraes LF, Grzeskowiak LM, de Sales Teixeira TF, Gouveia Peluzio Mdo C. Intestinal microbiota and probiotics in celiac disease. Clin Microbiol Rev. 2014 Jul; 27 (3):482 - 9. doi: 10.1128/CMR. 00106 - 13.
      70. Schroeder KW, Tremaine WJ, Ilstrup DM. Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. A randomized study. N Engl J Med. 1987 Dec 24;317 (26):1625 - 9. doi: 10.1056/NEJM198712243172603.
      71. Rachmilewitz D. Coated mesalazine (5-aminosalicylic acid) versus sulphasalazine in the treatment of active ulcerative colitis: a randomised trial. BMJ. 1989 Jan 14;298 (6666):82 - 6.
      72. Голофеевский В. Ю., Герасимова А. В., Ситкин С. И., Асанин Ю. Ю. Индекс Масевича: новый подход к оценке клинико-эндоскопической активности язвенного колита // Гастроэнтерология Санкт-Петербурга. - 2004. - № 1. - С. 14 - 15.
      73. Орешко Л. С. Исторические и клинические аспекты целиакии. - СПб.: СПбГМА им. И. И. Мечникова, 2011. - 108 с.
      74. Парфенов А. И. Глютенчувствительная целиакия - мультидисциплинарная патология человека // Верхневолжский медицинский журнал. - 2013. - Т. 11, № 2. - С. 42 - 48.
      75. Лазебник Л. Б., Ткаченко Е. И., Орешко Л. С., Ситкин С. И., Карпов А. А., Немцов В. И., Осипенко М. Ф., Радченко В. Г., Федоров Е. Д., Медведева О. И., Селиверстов П. В., Соловьева Е. А., Шабанова А. А., Журавлева М. С. Рекомендации по диагностике и лечению целиакии взрослых // Экспериментальная и клиническая гастроэнтерология. - 2015. - № 5 (117). - С. 3 - 12.
      76. Penders J, Thijs C, van den Brandt PA, Kummeling I, Snijders B, Stelma F, Adams H, van Ree R, Stobberingh EE. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut. 2007 May; 56 (5):661 - 7. doi: 10.1136/gut. 2006.100164.
      77. Smith B, Li N, Andersen AS, Slotved HC, Krogfelt KA. Optimising bacterial DNA extraction from faecal samples: comparison of three methods. Open Microbiol J. 2011;5:14 - 7. doi: 10.2174/1874285801105010014.
      78. Liu C, Song Y, McTeague M, Vu AW, Wexler H, Finegold SM. Rapid identification of the species of the Bacteroides fragilis group by multiplex PCR assays using group- and species-specific primers. FEMS Microbiol Lett. 2003 May 16;222 (1):9 - 16.
      79. Rinttilä T., Kassinen A, Malinen E, Krogius L, Palva A. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol. 2004;97 (6):1166 - 77. doi: 10.1111/j. 1365 - 2672.2004.02409.x.
      80. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, van den Brandt PA, Stobberingh EE. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006 Aug; 118 (2):511 - 21. doi: 10.1542/peds. 2005 - 2824.
      81. Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, Cosnes J, Corthier G, Marteau P, Doré J. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009 Aug; 15 (8):1183 - 9. doi: 10.1002/ibd. 20903.
      82. Louis P, Flint HJ. Development of a semiquantitative degenerate real-time pcr-based assay for estimation of numbers of butyryl-coenzyme A (CoA) CoA transferase genes in complex bacterial samples. Appl Environ Microbiol. 2007 Mar; 73 (6):2009 - 12. doi: 10.1128/AEM. 02561 - 06.
      83. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009 May; 294 (1):1 - 8. doi: 10.1111/j. 1574 - 6968.2009.01514.x.
      84. Гржибовский А. М. Типы данных, проверка распределения и описательная статистика // Экология человека. - 2008. - № 1. - С. 52 - 58.
      85. Банержи A. Медицинская статистка понятным языком: вводный курс / пер. с англ. под ред. В. П. Леонова. - М.: Практическая медицина, 2014. - 287 с.
      86. Гублер Е. В., Генкин А. А. Применение непараметрических критериев статистики в медико-биологических исследованиях. - Л.: Медицина. - 1973. - 141 с.
      87. Гржибовский А. М. Анализ количественных данных для двух независимых групп // Экология человека. - 2008. - № 2. - С. 54 - 61.
      88. Наследов А. SPSS 19: профессиональный статистический анализ данных. - СПб.: Питер, 2011. - 400 с.
      89. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science. 2005 Jun 10;308 (5728):1635 - 8. doi: 10.1126/science. 1110591.
      90. Hong PY, Wu JH, Liu WT. Relative abundance of Bacteroides spp. in stools and wastewaters as determined by hierarchical oligonucleotide primer extension. Appl Environ Microbiol. 2008 May; 74 (9):2882 - 93. doi: 10.1128/AEM. 02568 - 07.
      91. Sakamoto M, Benno Y. Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Evol Microbiol. 2006 Jul; 56 (Pt 7):1599 - 605. doi: 10.1099/ijs. 0.64192 - 0.
      92. Nakanishi H, Shojo H, Ohmori T, Hara M, Takada A, Adachi N, Saito K. Identification of feces by detection of Bacteroides genes. Forensic Sci Int Genet. 2013 Jan; 7 (1):176 - 9. doi: 10.1016/j. fsigen. 2012.09.006.
      93. Kabiri L, Alum A, Rock C, McLain JE, Abbaszadegan M. Isolation of Bacteroides from fish and human fecal samples for identification of unique molecular markers. Can J Microbiol. 2013 Dec; 59 (12):771 - 7. doi: 10.1139/cjm-2013 - 0518.
      94. Ткаченко Е. И. Питание, эндоэкология человека, здоровье, болезни. Современный взгляд на проблему их взаимосвязей // Терапевтический архив. - 2004. - Т. 76, № 2. - С. 67 - 71.
      95. Вахитов Т. Я., Ситкин С. И. Концепция суперорганизма в биологии и медицине // Экспериментальная и клиническая гастроэнтерология. - 2014. - № 7 (107). - С. 72 - 85.
      96. Heinken A, Sahoo S, Fleming RM, Thiele I. Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes. 2013 Jan-Feb; 4 (1):28 - 40. doi: 10.4161/gmic. 22370.
      97. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007 Aug 21;104 (34):13780 - 5. doi: 10.1073/pnas. 0706625104.
      98. Troy EB, Kasper DL. Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Front Biosci (Landmark Ed). 2010 Jan 1;15:25 - 34.
      99. Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol. 2003 Mar; 4 (3):269 - 73. doi: 10.1038/ni888.
      100. Narimani T, Douraghi M, Owlia P, Rastegar A, Esghaei M, Nasr B, Talebi M. Heterogeneity in resistant fecal Bacteroides fragilis group collected from healthy people. Microb Pathog. 2016 Jun; 95:1 - 6. doi: 10.1016/j. micpath. 2016.02.017.
      101. Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev. 2007 Oct; 20 (4):593 - 621. doi: 10.1128/CMR. 00008 - 07.
      102. Helphingstine CJ, Hentges DJ, Campbell BJ, Butt J, Barrett JT. Antibodies detectable by counterimmunoelectrophoresis against Bacteroides antigens in serum of patients with inflammatory bowel disease. J Clin Microbiol. 1979 Mar; 9 (3):373 - 8.
      103. Bamba T, Matsuda H, Endo M, Fujiyama Y. The pathogenic role of Bacteroides vulgatus in patients with ulcerative colitis. J Gastroenterol. 1995 Nov; 30 Suppl 8:45 - 7.
      104. Saitoh S, Noda S, Aiba Y, Takagi A, Sakamoto M, Benno Y, Koga Y. Bacteroides ovatus as the predominant commensal intestinal microbe causing a systemic antibody response in inflammatory bowel disease. Clin Diagn Lab Immunol. 2002 Jan; 9 (1):54 - 9.
      105. Iltanen S, Tervo L, Halttunen T, Wei B, Braun J, Rantala I, Honkanen T, Kronenberg M, Cheroutre H, Turovskaya O, Autio V, Ashorn M. Elevated serum anti-I2 and anti-OmpW antibody levels in children with IBD. Inflamm Bowel Dis. 2006 May; 12 (5):389 - 94. doi: 10.1097/01. MIB. 0000218765.84087.42.
      106. Frehn L, Jansen A, Bennek E, Mandic AD, Temizel I, Tischendorf S, Verdier J, Tacke F, Streetz K, Trautwein C, Sellge G. Distinct patterns of IgG and IgA against food and microbial antigens in serum and feces of patients with inflammatory bowel diseases. PLoS One. 2014 Sep 12;9 (9):e106750. doi: 10.1371/journal. pone. 0106750.
      107. Tvede M, Bondesen S, Nielsen OH, Rasmussen SN. Serum antibodies to Bacteroides species in chronic inflammatory bowel disease. Scand J Gastroenterol. 1983 Sep; 18 (6):783 - 9.
      108. Campieri M, Gionchetti P. Bacteria as the cause of ulcerative colitis. Gut. 2001 Jan; 48 (1):132 - 5.
      109. Ashorn S, Honkanen T, Kolho KL, Ashorn M, Välineva T, Wei B, Braun J, Rantala I, Luukkaala T, Iltanen S. Fecal calprotectin levels and serological responses to microbial antigens among children and adolescents with inflammatory bowel disease. Inflamm Bowel Dis. 2009 Feb; 15 (2):199 - 205. doi: 10.1002/ibd. 20535.
      110. Sydora BC, Tavernini MM, Doyle JS, Fedorak RN. Association with selected bacteria does not cause enterocolitis in IL-10 gene-deficient mice despite a systemic immune response. Dig Dis Sci. 2005 May; 50 (5):905 - 13.
      111. Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol. 2005 Jul; 43 (7):3380 - 9. doi: 10.1128/JCM. 43.7.3380 - 3389.2005.
      112. Lucke K, Miehlke S, Jacobs E, Schuppler M. Prevalence of Bacteroides and Prevotella spp. in ulcerative colitis. J Med Microbiol. 2006 May; 55 (Pt 5):617 - 24. doi: 10.1099/jmm. 0.46198 - 0.
      113. Kabeerdoss J, Jayakanthan P, Pugazhendhi S, Ramakrishna BS. Alterations of mucosal microbiota in the colon of patients with inflammatory bowel disease revealed by real time polymerase chain reaction amplification of 16S ribosomal ribonucleic acid. Indian J Med Res. 2015 Jul; 142 (1):23 - 32. doi: 10.4103/0971 - 5916.162091.
      114. Zhang T, Chen Y, Wang Z, Zhou Y, Zhang S, Wang P, Xie S, Jiang B. [Changes of fecal flora and its correlation with inflammatory indicators in patients with inflammatory bowel disease]. [Article in Chinese] Nan Fang Yi Ke Da Xue Xue Bao. 2013 Oct; 33 (10):1474 - 7.
      115. Yao P, Cui M, Wang H, Gao H, Wang L, Yang T, Cheng Y. Quantitative Analysis of Intestinal Flora of Uygur and Han Ethnic Chinese Patients with Ulcerative Colitis. Gastroenterol Res Pract. 2016;2016:9186232. doi: 10.1155/2016/9186232.
      116. Jansson J, Willing B, Lucio M, Fekete A, Dicksved J, Halfvarson J, Tysk C, Schmitt-Kopplin P. Metabolomics reveals metabolic biomarkers of Crohn’s disease. PLoS One. 2009 Jul 28;4 (7):e6386. doi: 10.1371/journal. pone. 0006386.
      117. Conte MP, Schippa S, Zamboni I, Penta M, Chiarini F, Seganti L, Osborn J, Falconieri P, Borrelli O, Cucchiara S. Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut. 2006 Dec; 55 (12):1760 - 7. doi: 10.1136/gut. 2005.078824.
      118. Fite A, Macfarlane S, Furrie E, Bahrami B, Cummings JH, Steinke DT, Macfarlane GT. Longitudinal analyses of gut mucosal microbiotas in ulcerative colitis in relation to patient age and disease severity and duration. J Clin Microbiol. 2013 Mar; 51 (3):849 - 56. doi: 10.1128/JCM. 02574 - 12.
      119. Takaishi H, Matsuki T, Nakazawa A, Takada T, Kado S, Asahara T, Kamada N, Sakuraba A, Yajima T, Higuchi H, Inoue N, Ogata H, Iwao Y, Nomoto K, Tanaka R, Hibi T. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int J Med Microbiol. 2008 Jul; 298 (5-6):463 - 72. doi: 10.1016/j. ijmm. 2007.07.016.
      120. Nemoto H, Kataoka K, Ishikawa H, Ikata K, Arimochi H, Iwasaki T, Ohnishi Y, Kuwahara T, Yasutomo K. Reduced diversity and imbalance of fecal microbiota in patients with ulcerative colitis. Dig Dis Sci. 2012 Nov; 57 (11):2955 - 64. doi: 10.1007/s10620-012-2236-y.
      121. Noor SO, Ridgway K, Scovell L, Kemsley EK, Lund EK, Jamieson C, Johnson IT, Narbad A. Ulcerative colitis and irritable bowel patients exhibit distinct abnormalities of the gut microbiota. BMC Gastroenterol. 2010 Nov 12;10:134. doi: 10.1186/1471-230X-10 - 134.
      122. Casén C, Vebø HC, Sekelja M, Hegge FT, Karlsson MK, Ciemniejewska E, Dzankovic S, Frøyland C, Nestestog R, Engstrand L, Munkholm P, Nielsen OH, Rogler G, Simrén M, Öhman L, Vatn MH, Rudi K. Deviations in human gut microbiota: a novel diagnostic test for determining dysbiosis in patients with IBS or IBD. Aliment Pharmacol Ther. 2015 Jul; 42 (1):71 - 83. doi: 10.1111/apt. 13236.
      123. Thorkildsen LT, Nwosu FC, Avershina E, Ricanek P, Perminow G, Brackmann S, Vatn MH, Rudi K. Dominant fecal microbiota in newly diagnosed untreated inflammatory bowel disease patients. Gastroenterol Res Pract. 2013;2013:636785. doi: 10.1155/2013/636785.
      124. Bloom SM, Bijanki VN, Nava GM, Sun L, Malvin NP, Donermeyer DL, Dunne WM Jr, Allen PM, Stappenbeck TS. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease. Cell Host Microbe. 2011 May 19;9 (5):390 - 403. doi: 10.1016/j. chom. 2011.04.009.
      125. Ohkusa T, Yoshida T, Sato N, Watanabe S, Tajiri H, Okayasu I. Commensal bacteria can enter colonic epithelial cells and induce proinflammatory cytokine secretion: a possible pathogenic mechanism of ulcerative colitis. J Med Microbiol. 2009 May; 58 (Pt 5):535 - 45. doi: 10.1099/jmm. 0.005801 - 0.
      126. Sato K, Kumita W, Ode T, Ichinose S, Ando A, Fujiyama Y, Chida T, Okamura N. OmpA variants affecting the adherence of ulcerative colitis-derived Bacteroides vulgatus. J Med Dent Sci. 2010 Mar; 57 (1):55 - 64.
      127. Hickey CA, Kuhn KA, Donermeyer DL, Porter NT, Jin C, Cameron EA, Jung H, Kaiko GE, Wegorzewska M, Malvin NP, Glowacki RW, Hansson GC, Allen PM, Martens EC, Stappenbeck TS. Colitogenic Bacteroides thetaiotaomicron Antigens Access Host Immune Cells in a Sulfatase-Dependent Manner via Outer Membrane Vesicles. Cell Host Microbe. 2015 May 13;17 (5):672 - 80. doi: 10.1016/j. chom. 2015.04.002.
      128. Rhee KJ, Wu S, Wu X, Huso DL, Karim B, Franco AA, Rabizadeh S, Golub JE, Mathews LE, Shin J, Sartor RB, Golenbock D, Hamad AR, Gan CM, Housseau F, Sears CL. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun. 2009 Apr; 77 (4):1708 - 18. doi: 10.1128/IAI. 00814 - 08.
      129. Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008 May 29;453 (7195):620 - 5. doi: 10.1038/nature07008.
      130. Waidmann M, Bechtold O, Frick JS, Lehr HA, Schubert S, Dobrindt U, Loeffler J, Bohn E, Autenrieth IB. Bacteroides vulgatus protects against Escherichia coli-induced colitis in gnotobiotic interleukin-2-deficient mice. Gastroenterology. 2003 Jul; 125 (1):162 - 77.
      131. Hudcovic T, Kozáková H, Kolínská J, Stepánková R, Hrncír T, Tlaskalová-Hogenová H. Monocolonization with Bacteroides ovatus protects immunodeficient SCID mice from mortality in chronic intestinal inflammation caused by long-lasting dextran sodium sulfate treatment. Physiol Res. 2009;58 (1):101 - 10.
      132. Sánchez E, De Palma G, Capilla A, Nova E, Pozo T, Castillejo G, Varea V, Marcos A, Garrote JA, Polanco I, López A, Ribes-Koninckx C, García-Novo MD, Calvo C, Ortigosa L, Palau F, Sanz Y. Influence of environmental and genetic factors linked to celiac disease risk on infant gut colonization by Bacteroides species. Appl Environ Microbiol. 2011 Aug; 77 (15):5316 - 23. doi: 10.1128/AEM. 00365 - 11.
      133. Sánchez E, Laparra JM, Sanz Y. Discerning the role of Bacteroides fragilis in celiac disease pathogenesis. Appl Environ Microbiol. 2012 Sep; 78 (18):6507 - 15. doi: 10.1128/AEM. 00563 - 12.
      134. Hoffmann KM, Deutschmann A, Weitzer C, Joainig M, Zechner E, Högenauer C, Hauer AC. Antibiotic-associated hemorrhagic colitis caused by cytotoxin-producing Klebsiella oxytoca. Pediatrics. 2010 Apr; 125 (4):e960-3. doi: 10.1542/peds. 2009 - 1751.
      135. Ravcheev DA, Godzik A, Osterman AL, Rodionov DA. Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks. BMC Genomics. 2013 Dec 12;14:873. doi: 10.1186/1471-2164-14-873.
      136. Cantarel BL, Lombard V, Henrissat B. Complex carbohydrate utilization by the healthy human microbiome. PLoS One. 2012;7 (6):e28742. doi: 10.1371/journal. pone. 0028742.
      137. Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, Hooper LV, Gordon JI. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science. 2003 Mar 28;299 (5615):2074 - 6. doi: 10.1126/science. 1080029.
      138. Martens EC, Koropatkin NM, Smith TJ, Gordon JI. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J Biol Chem. 2009 Sep 11;284 (37):24673 - 7. doi: 10.1074/jbc. R109.022848.
      139. Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, Abbott DW, Henrissat B, Gilbert HJ, Bolam DN, Gordon JI. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 2011 Dec; 9 (12):e1001221. doi: 10.1371/journal. pbio. 1001221.
      140. Bolam DN, Koropatkin NM. Glycan recognition by the Bacteroidetes Sus-like systems. Curr Opin Struct Biol. 2012 Oct; 22 (5):563 - 9. doi: 10.1016/j. sbi. 2012.06.006.
      141. Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol. 2012 Apr 11;10 (5):323 - 35. doi: 10.1038/nrmicro2746.
      142. Ulmer JE, Vilén EM, Namburi RB, Benjdia A, Beneteau J, Malleron A, Bonnaffé D, Driguez PA, Descroix K, Lassalle G, Le Narvor C, Sandström C, Spillmann D, Berteau O. Characterization of glycosaminoglycan (GAG) sulfatases from the human gut symbiont Bacteroides thetaiotaomicron reveals the first GAG-specific bacterial endosulfatase. J Biol Chem. 2014 Aug 29;289 (35):24289 - 303. doi: 10.1074/jbc. M114.573303.
      143. Cameron EA, Kwiatkowski KJ, Lee BH, Hamaker BR, Koropatkin NM, Martens EC. Multifunctional nutrient-binding proteins adapt human symbiotic bacteria for glycan competition in the gut by separately promoting enhanced sensing and catalysis. MBio. 2014 Sep 9;5 (5):e01441-14. doi: 10.1128/mBio. 01441 - 14.
      144. Wrzosek L, Miquel S, Noordine ML, Bouet S, Joncquel Chevalier-Curt M, Robert V, Philippe C, Bridonneau C, Cherbuy C, Robbe-Masselot C, Langella P, Thomas M. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol. 2013 May 21;11:61. doi: 10.1186/1741-7007-11-61.
      145. Woting A, Blaut M. The Intestinal Microbiota in Metabolic Disease. Nutrients. 2016 Apr 6;8 (4):202. doi: 10.3390/nu8040202.
      146. Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AG, Pettersson S, Conway S. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol. 2004 Jan; 5 (1):104 - 12. doi: 10.1038/ni1018.
      147. Taketani M, Donia MS, Jacobson AN, Lambris JD, Fischbach MA. A Phase-Variable Surface Layer from the Gut Symbiont Bacteroides thetaiotaomicron. MBio. 2015 Sep 29;6 (5):e01339-15. doi: 10.1128/mBio. 01339 - 15.
      148. de Sablet T, Chassard C, Bernalier-Donadille A, Vareille M, Gobert AP, Martin C. Human microbiota-secreted factors inhibit shiga toxin synthesis by enterohemorrhagic Escherichia coli O157: H7. Infect Immun. 2009 Feb; 77 (2):783 - 90. doi: 10.1128/IAI. 01048 - 08.
      149. Cordonnier C, Le Bihan G, Emond-Rheault JG, Garrivier A, Harel J, Jubelin G. Vitamin B12 Uptake by the Gut Commensal Bacteria Bacteroides thetaiotaomicron Limits the Production of Shiga Toxin by Enterohemorrhagic Escherichia coli. Toxins (Basel). 2016 Jan 5;8 (1). pii: E14. doi: 10.3390/toxins8010014.
      150. Varyukhina S, Freitas M, Bardin S, Robillard E, Tavan E, Sapin C, Grill JP, Trugnan G. Glycan-modifying bacteria-derived soluble factors from Bacteroides thetaiotaomicron and Lactobacillus casei inhibit rotavirus infection in human intestinal cells. Microbes Infect. 2012 Mar; 14 (3):273 - 8. doi: 10.1016/j. micinf. 2011.10.007.
      151. Ferreyra JA, Wu KJ, Hryckowian AJ, Bouley DM, Weimer BC, Sonnenburg JL. Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance. Cell Host Microbe. 2014 Dec 10;16 (6):770 - 7. doi: 10.1016/j. chom. 2014.11.003.
      152. Curtis MM, Hu Z, Klimko C, Narayanan S, Deberardinis R, Sperandio V. The Gut Commensal Bacteroides thetaiotaomicron Exacerbates Enteric Infection through Modification of the Metabolic Landscape. Cell Host Microbe. 2014 Dec 10;16 (6):759 - 69. doi: 10.1016/j. chom. 2014.11.005.
      153. Iversen H, Lindbäck T, L’Abée-Lund TM, Roos N, Aspholm M, Stenfors Arnesen L. The gut bacterium Bacteroides thetaiotaomicron influences the virulence potential of the enterohemorrhagic Escherichia coli O103: H25. PLoS One. 2015 Feb 26;10 (2):e0118140. doi: 10.1371/journal. pone. 0118140.
      154. Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003 Feb; 62 (1):67 - 72. doi: 10.1079/PNS2002207.
      155. Mills E, O’Neill LA. Succinate: a metabolic signal in inflammation. Trends Cell Biol. 2014 May; 24 (5):313 - 20. doi: 10.1016/j. tcb. 2013.11.008.
      156. Wang A, Si H, Liu D, Jiang H. Butyrate activates the cAMP-protein kinase A-cAMP response element-binding protein signaling pathway in Caco-2 cells. J Nutr. 2012 Jan; 142 (1):1 - 6. doi: 10.3945/jn. 111.148155.
      157. Diakos C, Prieschl EE, Säemann M, Novotny V, Böhmig G, Csonga R, Baumruker T, Zlabinger GJ. Novel mode of interference with nuclear factor of activated T-cells regulation in T-cells by the bacterial metabolite n-butyrate. J Biol Chem. 2002 Jul 5;277 (27):24243 - 51. doi: 10.1074/jbc. M200191200
      158. Diakos C, Prieschl EE, Säemann MD, Böhmig GA, Csonga R, Sobanov Y, Baumruker T, Zlabinger GJ. n-Butyrate inhibits Jun NH (2) - terminal kinase activation and cytokine transcription in mast cells. Biochem Biophys Res Commun. 2006 Oct 20;349 (2):863 - 8. doi: 10.1016/j. bbrc. 2006.08.117
      159. Campbell Y, Fantacone ML, Gombart AF. Regulation of antimicrobial peptide gene expression by nutrients and by-products of microbial metabolism. Eur J Nutr. 2012 Dec; 51 (8):899 - 907. doi: 10.1007/s00394-012-0415-4.
      160. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, Rudensky AY. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013 Dec 19;504 (7480):451 - 5. doi: 10.1038/nature12726.
      161. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013 Dec 19;504 (7480):446 - 50. doi: 10.1038/nature12721.
      162. Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A. 2014 Feb 11;111 (6):2247 - 52. doi: 10.1073/pnas. 1322269111.
      163. Tamura K, Yamamura M, Satomi M. Effect of butyrate on colonic mucosa. JJPEN: Japanese Journal of Parenteral and Enteral Nutrition. 1995 17:481 - 4.
      164. Segain JP, Raingeard de la Blétière D, Bourreille A, Leray V, Gervois N, Rosales C, Ferrier L, Bonnet C, Blottière HM, Galmiche JP. Butyrate inhibits inflammatory responses through NFκB inhibition: implications for Crohn’s disease. Gut. 2000 Sep; 47 (3):397 - 403.
      165. Peng L, Li ZR, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr. 2009 Sep; 139 (9):1619 - 25. doi: 10.3945/jn. 109.104638.
      166. Vinolo MA, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC, Curi R. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J Nutr Biochem. 2011 Sep; 22 (9):849 - 55. doi: 10.1016/j. jnutbio. 2010.07.009.
      167. Lührs H, Kudlich T, Neumann M, Schauber J, Melcher R, Gostner A, Scheppach W, Menzel TP. Butyrate-enhanced TNFα-induced apoptosis is associated with inhibition of NF-κB. Anticancer Res. 2002 May-Jun; 22 (3):1561 - 8.
      168. Scharlau D, Borowicki A, Habermann N, Hofmann T, Klenow S, Miene C, Munjal U, Stein K, Glei M. Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat Res. 2009 Jul-Aug; 682 (1):39 - 53. doi: 10.1016/j. mrrev. 2009.04.001.
      169. Lazarova DL, Chiaro C, Bordonaro M. Butyrate induced changes in Wnt-signaling specific gene expression in colorectal cancer cells. BMC Res Notes. 2014 Apr 9;7:226. doi: 10.1186/1756-0500-7-226.
      170. Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ. The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett. 2002 Dec 17;217 (2):133 - 9.
      171. Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, Henderson C, Flint HJ. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol. 2000 Apr; 66 (4):1654 - 61.
      172. Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ. Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol. 2002 Oct; 68 (10):5186 - 90.
      173. Louis P, Young P, Holtrop G, Flint HJ. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: acetate CoA-transferase gene. Environ Microbiol. 2010 Feb; 12 (2):304 - 14. doi: 10.1111/j. 1462 - 2920.2009.02066.x.
      174. Vital M, Penton CR, Wang Q, Young VB, Antonopoulos DA, Sogin ML, Morrison HG, Raffals L, Chang EB, Huffnagle GB, Schmidt TM, Cole JR, Tiedje JM. A gene-targeted approach to investigate the intestinal butyrate-producing bacterial community. Microbiome. 2013 Mar 4;1 (1):8. doi: 10.1186/2049-2618-1-8.
      175. Bui TP, de Vos WM, Plugge CM. Anaerostipes rhamnosivorans sp. nov., a human intestinal, butyrate-forming bacterium. Int J Syst Evol Microbiol. 2014 Mar; 64 (Pt 3):787 - 93. doi: 10.1099/ijs. 0.055061 - 0.
      176. Vital M, Howe AC, Tiedje JM. Revealing the bacterial butyrate synthesis pathways by analyzing (meta) genomic data. MBio. 2014 Apr 22;5 (2):e00889. doi: 10.1128/mBio. 00889 - 14.
      177. Varela E, Manichanh C, Gallart M, Torrejón A, Borruel N, Casellas F, Guarner F, Antolin M. Colonisation by Faecalibacterium prausnitzii and maintenance of clinical remission in patients with ulcerative colitis. Aliment Pharmacol Ther. 2013 Jul; 38 (2):151 - 61. doi: 10.1111/apt. 12365.
      178. Wang W, Chen L, Zhou R, Wang X, Song L, Huang S, Wang G, Xia B. Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease. J Clin Microbiol. 2014 Feb; 52 (2):398 - 406. doi: 10.1128/JCM. 01500 - 13.
      179. Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, Ballet V, Claes K, Van Immerseel F, Verbeke K, Ferrante M, Verhaegen J, Rutgeerts P, Vermeire S. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014 Aug; 63 (8):1275 - 83. doi: 10.1136/gutjnl-2013 - 304833.
      180. Cao Y, Shen J, Ran ZH. Association between Faecalibacterium prausnitzii Reduction and Inflammatory Bowel Disease: A Meta-Analysis and Systematic Review of the Literature. Gastroenterol Res Pract. 2014;2014:872725. doi: 10.1155/2014/872725.
      181. Zhang M, Liu B, Zhang Y, Wei H, Lei Y, Zhao L. Structural shifts of mucosa-associated lactobacilli and Clostridium leptum subgroup in patients with ulcerative colitis. J Clin Microbiol. 2007 Feb; 45 (2):496 - 500. doi: 10.1128/JCM. 01720 - 06.
      182. Vermeiren J, Van den Abbeele P, Laukens D, Vigsnaes LK, De Vos M, Boon N, Van de Wiele T. Decreased colonization of fecal Clostridium coccoides/Eubacterium rectale species from ulcerative colitis patients in an in vitro dynamic gut model with mucin environment. FEMS Microbiol Ecol. 2012 Mar; 79 (3):685 - 96. doi: 10.1111/j. 1574 - 6941.2011.01252.x.
      183. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012 Apr 16;13 (9):R79. doi: 10.1186/gb-2012-13-9-r79.
      184. Eeckhaut V, Machiels K, Perrier C, Romero C, Maes S, Flahou B, Steppe M, Haesebrouck F, Sas B, Ducatelle R, Vermeire S, Van Immerseel F. Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut. 2013 Dec; 62 (12):1745 - 52. doi: 10.1136/gutjnl-2012 - 303611.
      185. Kumari R, Ahuja V, Paul J. Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India. World J Gastroenterol. 2013 Jun 14;19 (22):3404 - 14. doi: 10.3748/wjg. v19.i22.3404.
      186. Chen L, Wang W, Zhou R, Ng SC, Li J, Huang M, Zhou F, Wang X, Shen B, A Kamm M, Wu K, Xia B. Characteristics of fecal and mucosa-associated microbiota in chinese patients with inflammatory bowel disease. Medicine (Baltimore). 2014 Aug; 93 (8):e51. doi: 10.1097/MD. 0000000000000051.
      187. Devriese S, Eeckhaut V, Geirnaert A, Van den Bossche L, Hindryckx P, Van de Wiele T, Van Immerseel F, Ducatelle R, De Vos M, Laukens D. Reduced mucosa-associated Butyricicoccus activity in patients with ulcerative colitis correlates with aberrant claudin-1 expression. J Crohns Colitis. 2016 Aug 1. pii: jjw142. doi: 10.1093/ecco-jcc/jjw142.
      188. Mahowald MA, Rey FE, Seedorf H, Turnbaugh PJ, Fulton RS, Wollam A, Shah N, Wang C, Magrini V, Wilson RK, Cantarel BL, Coutinho PM, Henrissat B, Crock LW, Russell A, Verberkmoes NC, Hettich RL, Gordon JI. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc Natl Acad Sci U S A. 2009 Apr 7;106 (14):5859 - 64. doi: 10.1073/pnas. 0901529106.
      189. Png CW, Lindén SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, McGuckin MA, Florin TH. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010 Nov; 105 (11):2420 - 8. doi: 10.1038/ajg. 2010.281.
      190. Vigsnæs LK, Brynskov J, Steenholdt C, Wilcks A, Licht TR. Gram-negative bacteria account for main differences between faecal microbiota from patients with ulcerative colitis and healthy controls. Benef Microbes. 2012 Dec 1;3 (4):287 - 97. doi: 10.3920/BM2012.0018.
      191. König J, Brummer RJ. Alteration of the intestinal microbiota as a cause of and a potential therapeutic option in irritable bowel syndrome. Benef Microbes. 2014 Sep; 5 (3):247 - 61. doi: 10.3920/BM2013.0033.
      192. Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, Jia W, Cai S, Zhao L. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012 Feb; 6 (2):320 - 9. doi: 10.1038/ismej. 2011.109.
      193. Weir TL, Manter DK, Sheflin AM, Barnett BA, Heuberger AL, Ryan EP. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One. 2013 Aug 6;8 (8):e70803. doi: 10.1371/journal. pone. 0070803.
      194. De Palma G, Nadal I, Medina M, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol. 2010 Feb 24;10:63. doi: 10.1186/1471-2180-10-63.
      195. Абдурасулова И. Н., Тарасова Е. А., Ермоленко Е. И., Елисеев А. В., Мацулевич А. В., Бисага Г. Н., Скулябин Д. И., Суворов А. Н., Клименко В. М. При рассеянном склерозе изменяется качественный и количественный состав микробиоты кишечника // Медицинский академический журнал. - 2015. - Том 15, № 3. - С. 55 - 67.
      196. Munukka E, Pekkala S, Wiklund P, Rasool O, Borra R, Kong L, Ojanen X, Cheng SM, Roos C, Tuomela S, Alen M, Lahesmaa R, Cheng S. Gut-adipose tissue axis in hepatic fat accumulation in humans. J Hepatol. 2014 Jul; 61 (1):132 - 8. doi: 10.1016/j. jhep. 2014.02.020.
      197. Chung WS, Walker AW, Louis P, Parkhill J, Vermeiren J, Bosscher D, Duncan SH, Flint HJ. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol. 2016 Jan 11;14:3. doi: 10.1186/s12915-015-0224-3.
      198. Kettle H, Donnelly R, Flint HJ, Marion G. pH feedback and phenotypic diversity within bacterial functional groups of the human gut. J Theor Biol. 2014 Feb 7;342:62 - 9. doi: 10.1016/j. jtbi. 2013.10.015.
      199. Shin R, Suzuki M, Morishita Y. Influence of intestinal anaerobes and organic acids on the growth of enterohaemorrhagic Escherichia coli O157: H7. J Med Microbiol. 2002 Mar; 51 (3):201 - 6. doi: 10.1099/0022-1317-51-3-201.
      200. Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013 Jul; 14 (7):685 - 90. doi: 10.1038/ni. 2608.
      201. Walker AW, Duncan SH, McWilliam Leitch EC, Child MW, Flint HJ. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol. 2005 Jul; 71 (7):3692 - 700. doi: 10.1128/AEM. 71.7.3692 - 3700.2005.
      202. Duncan SH, Louis P, Thomson JM, Flint HJ. The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol. 2009 Aug; 11 (8):2112 - 22. doi: 10.1111/j. 1462 - 2920.2009.01931.x.
      203. Boesmans L, Ramakers M, Arijs I, Windey K, Vanhove W, Schuit F, Rutgeerts P, Verbeke K, De Preter V. Inflammation-Induced Downregulation of Butyrate Uptake and Oxidation Is Not Caused by a Reduced Gene Expression. J Cell Physiol. 2015 Feb; 230 (2):418 - 26. doi: 10.1002/jcp. 24725.
      204. DeMeo MT, Mutlu EA, Keshavarzian A, Tobin MC. Intestinal permeation and gastrointestinal disease. J Clin Gastroenterol. 2002 Apr; 34 (4):385 - 96.
      205. Thibault R, Blachier F, Darcy-Vrillon B, de Coppet P, Bourreille A, Segain JP. Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: a transport deficiency. Inflamm Bowel Dis. 2010 Apr; 16 (4):684 - 95. doi: 10.1002/ibd. 21108.
      206. Kumar A, Alrefai WA, Borthakur A, Dudeja PK. Lactobacillus acidophilus counteracts enteropathogenic E. coli-induced inhibition of butyrate uptake in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2015 Oct 1;309 (7):G602-7. doi: 10.1152/ajpgi. 00186.2015.
      207. Hulin SJ, Singh S, Chapman MA, Allan A, Langman MJ, Eggo MC. Sulphide-induced energy deficiency in colonic cells is prevented by glucose but not by butyrate. Aliment Pharmacol Ther. 2002 Feb; 16 (2):325 - 31.
      208. Bullock NR, Booth JC, Gibson GR. Comparative composition of bacteria in the human intestinal microflora during remission and active ulcerative colitis. Curr Issues Intest Microbiol. 2004 Sep; 5 (2):59 - 64.
      209. Vigsnaes LK, van den Abbeele P, Sulek K, Frandsen HL, Steenholdt C, Brynskov J, Vermeiren J, van de Wiele T, Licht TR. Microbiotas from UC patients display altered metabolism and reduced ability of LAB to colonize mucus. Sci Rep. 2013;3:1110. doi: 10.1038/srep01110.
      210. Fyderek K, Strus M, Kowalska-Duplaga K, Gosiewski T, Wedrychowicz A, Jedynak-Wasowicz U, Sładek M, Pieczarkowski S, Adamski P, Kochan P, Heczko PB. Mucosal bacterial microflora and mucus layer thickness in adolescents with inflammatory bowel disease. World J Gastroenterol. 2009 Nov 14;15 (42):5287 - 94.
      211. Giaffer MH, Holdsworth CD, Duerden BI. The assessment of faecal flora in patients with inflammatory bowel disease by a simplified bacteriological technique. J Med Microbiol. 1991 Oct; 35 (4):238 - 43. doi: 10.1099/00222615-35-4-238.
      212. Mylonaki M, Rayment NB, Rampton DS, Hudspith BN, Brostoff J. Molecular characterization of rectal mucosa-associated bacterial flora in inflammatory bowel disease. Inflamm Bowel Dis. 2005 May; 11 (5):481 - 7.
      213. Goh YJ, Klaenhammer TR. Genomic features of Lactobacillus species. Front Biosci (Landmark Ed). 2009 Jan 1;14:1362 - 86.
      214. Mikelsaar M, Sepp E, Štšepetova J, Songisepp E, Mändar R. Biodiversity of Intestinal Lactic Acid Bacteria in the Healthy Population. Adv Exp Med Biol. 2016;932:1 - 64. doi: 10.1007/5584_2016_3.
      215. von Schillde MA, Hörmannsperger G, Weiher M, Alpert CA, Hahne H, Bäuerl C, van Huynegem K, Steidler L, Hrncir T, Pérez-Martínez G, Kuster B, Haller D. Lactocepin secreted by Lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines. Cell Host Microbe. 2012 Apr 19;11 (4):387 - 96. doi: 10.1016/j. chom. 2012.02.006.
      216. Al-Hassi HO, Mann ER, Sanchez B, English NR, Peake ST, Landy J, Man R, Urdaci M, Hart AL, Fernandez-Salazar L, Lee GH, Garrote JA, Arranz E, Margolles A, Stagg AJ, Knight SC, Bernardo D. Altered human gut dendritic cell properties in ulcerative colitis are reversed by Lactobacillus plantarum extracellular encrypted peptide STp. Mol Nutr Food Res. 2014 May; 58 (5):1132 - 43. doi: 10.1002/mnfr. 201300596.
      217. Tsilingiri K, Barbosa T, Penna G, Caprioli F, Sonzogni A, Viale G, Rescigno M. Probiotic and postbiotic activity in health and disease: comparison on a novel polarised ex-vivo organ culture model. Gut. 2012 Jul; 61 (7):1007 - 15. doi: 10.1136/gutjnl-2011 - 300971.
      218. Farina C, Arosio M, Mangia M, Moioli F. Lactobacillus casei subsp. rhamnosus sepsis in a patient with ulcerative colitis. J Clin Gastroenterol. 2001 Sep; 33 (3):251 - 2.
      219. Vahabnezhad E, Mochon AB, Wozniak LJ, Ziring DA. Lactobacillus bacteremia associated with probiotic use in a pediatric patient with ulcerative colitis. J Clin Gastroenterol. 2013 May-Jun; 47 (5):437 - 9. doi: 10.1097/MCG. 0b013e318279abf0.
      220. Meini S, Laureano R, Fani L, Tascini C, Galano A, Antonelli A, Rossolini GM. Breakthrough Lactobacillus rhamnosus GG bacteremia associated with probiotic use in an adult patient with severe active ulcerative colitis: case report and review of the literature. Infection. 2015 Dec; 43 (6):777 - 81. doi: 10.1007/s15010-015-0798-2.
      221. Sheikhi A, Shakerian M, Giti H, Baghaeifar M, Jafarzadeh A, Ghaed V, Heibor MR, Baharifar N, Dadafarin Z, Bashirpour G. Probiotic Yogurt Culture Bifidobacterium Animalis Subsp. Lactis BB-12 and Lactobacillus Acidophilus LA-5 Modulate the Cytokine Secretion by Peripheral Blood Mononuclear Cells from Patients with Ulcerative Colitis. Drug Res (Stuttg). 2016 Jun; 66 (6):300 - 5. doi: 10.1055/s-0035 - 1569414.
      222. Guarner F, Khan AG, Garisch J, Eliakim R, Gangl A, Thomson A, Krabshuis J, Lemair T, Kaufmann P, de Paula JA, Fedorak R, Shanahan F, Sanders ME, Szajewska H, Ramakrishna BS, Karakan T, Kim N; World Gastroenterology Organization. World Gastroenterology Organisation Global Guidelines: probiotics and prebiotics October 2011. J Clin Gastroenterol. 2012 Jul; 46 (6):468 - 81. doi: 10.1097/MCG. 0b013e3182549092.
      223. Mardini HE, Grigorian AY. Probiotic mix VSL#3 is effective adjunctive therapy for mild to moderately active ulcerative colitis: a meta-analysis. Inflamm Bowel Dis. 2014 Sep; 20 (9):1562 - 7. doi: 10.1097/MIB. 0000000000000084.
      224. Floch MH, Walker WA, Sanders ME, Nieuwdorp M, Kim AS, Brenner DA, Qamar AA, Miloh TA, Guarino A, Guslandi M, Dieleman LA, Ringel Y, Quigley EM, Brandt LJ. Recommendations for Probiotic Use - 2015 Update: Proceedings and Consensus Opinion. J Clin Gastroenterol. 2015 Nov-Dec; 49 Suppl 1: S69-73. doi: 10.1097/MCG. 0000000000000420.
      225. Zocco MA, dal Verme LZ, Cremonini F, Piscaglia AC, Nista EC, Candelli M, Novi M, Rigante D, Cazzato IA, Ojetti V, Armuzzi A, Gasbarrini G, Gasbarrini A. Efficacy of Lactobacillus GG in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther. 2006 Jun 1;23 (11):1567 - 74. doi: 10.1111/j. 1365 - 2036.2006.02927.x.
      226. Adams SM, Bornemann PH. Ulcerative colitis. Am Fam Physician. 2013 May 15;87 (10):699 - 705.
      227. Macfarlane S, Furrie E, Kennedy A, Cummings JH, Macfarlane GT. Mucosal bacteria in ulcerative colitis. Br J Nutr. 2005 Apr; 93 Suppl 1: S67-72.
      228. Орлова Н. А., Ситкин С. И., Ткаченко Е. И. Сравнительная оценка динамики показателей кишечной микрофлоры у больных воспалительными заболеваниями кишечника на фоне применения пробиотиков «Биофанк» и «Бифиформ» // Гастроэнтерология Санкт-Петербурга. - 2006. - № 1 - 2. - С. М113.
      229. Maukonen J, Kolho KL, Paasela M, Honkanen J, Klemetti P, Vaarala O, Saarela M. Altered fecal microbiota in pediatric inflammatory bowel disease. J Crohns Colitis. 2015 Dec; 9 (12):1088 - 95. doi: 10.1093/ecco-jcc/jjv147.
      230. Moran JP, Walter J, Tannock GW, Tonkonogy SL, Sartor RB. Bifidobacterium animalis causes extensive duodenitis and mild colonic inflammation in monoassociated interleukin-10-deficient mice. Inflamm Bowel Dis. 2009 Jul; 15 (7):1022 - 31. doi: 10.1002/ibd. 20900.
      231. Elian SD, Souza EL, Vieira AT, Teixeira MM, Arantes RM, Nicoli JR, Martins FS. Bifidobacterium longum subsp. infantis BB-02 attenuates acute murine experimental model of inflammatory bowel disease. Benef Microbes. 2015;6 (3):277 - 86. doi: 10.3920/BM2014.0070.
      232. Konieczna P, Akdis CA, Quigley EM, Shanahan F, O’Mahony L. Portrait of an immunoregulatory Bifidobacterium. Gut Microbes. 2012 May-Jun; 3 (3):261 - 6. doi: 10.4161/gmic. 20358.
      233. Groeger D, O’Mahony L, Murphy EF, Bourke JF, Dinan TG, Kiely B, Shanahan F, Quigley EM. Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes. 2013 Jul-Aug; 4 (4):325 - 39. doi: 10.4161/gmic. 25487.
      234. Wildt S, Nordgaard I, Hansen U, Brockmann E, Rumessen JJ. A randomised double-blind placebo-controlled trial with Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis BB-12 for maintenance of remission in ulcerative colitis. J Crohns Colitis. 2011 Apr; 5 (2):115 - 21. doi: 10.1016/j. crohns. 2010.11.004.
      235. Tamaki H, Nakase H, Inoue S, Kawanami C, Itani T, Ohana M, Kusaka T, Uose S, Hisatsune H, Tojo M, Noda T, Arasawa S, Izuta M, Kubo A, Ogawa C, Matsunaka T, Shibatouge M. Efficacy of probiotic treatment with Bifidobacterium longum 536 for induction of remission in active ulcerative colitis: A randomized, double-blinded, placebo-controlled multicenter trial. Dig Endosc. 2016 Jan; 28 (1):67 - 74. doi: 10.1111/den. 12553.
      236. Weber E, Reynaud Q, Suy F, Gagneux-Brunon A, Carricajo A, Guillot A, Botelho-Nevers E. Bifidobacterium species bacteremia: risk factors in adults and infants. Clin Infect Dis. 2015 Aug 1;61 (3):482 - 4. doi: 10.1093/cid/civ347.
      237. Sanz Y, Sánchez E, Marzotto M, Calabuig M, Torriani S, Dellaglio F. Differences in faecal bacterial communities in coeliac and healthy children as detected by PCR and denaturing gradient gel electrophoresis. FEMS Immunol Med Microbiol. 2007 Dec; 51 (3):562 - 8. doi: 10.1111/j. 1574-695X. 2007.00337.x.
      238. Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Imbalances in faecal and duodenal Bifidobacterium species composition in active and non-active coeliac disease. BMC Microbiol. 2008 Dec 22;8:232. doi: 10.1186/1471-2180-8-232.
      239. Nistal E, Caminero A, Vivas S, Ruiz de Morales JM, Sáenz de Miera LE, Rodríguez-Aparicio LB, Casqueiro J. Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie. 2012 Aug; 94 (8):1724 - 9. doi: 10.1016/j. biochi. 2012.03.025.
      240. Smecuol E, Hwang HJ, Sugai E, Corso L, Cherñavsky AC, Bellavite FP, González A, Vodánovich F, Moreno ML, Vázquez H, Lozano G, Niveloni S, Mazure R, Meddings J, Mauriño E, Bai JC. Exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis natren life start strain super strain in active celiac disease. J Clin Gastroenterol. 2013 Feb; 47 (2):139 - 47. doi: 10.1097/MCG. 0b013e31827759ac.
      241. Sitkin S., Tkachenko E., Vakhitov T., Oreshko L., Zhigalova T. Oral butyrate plus inulin improve serum metabolomic profile and gut microbiota composition in ulcerative colitis and celiac disease. J Crohns Colitis. 2014;8 (Suppl 1):S232. doi: 10.1016/S1873-9946 (14) 60519 - 5.
      242. Shenderov BA. Metabiotics: novel idea or natural development of probiotic conception. Microb Ecol Health Dis. 2013 Apr 12;24. doi: 10.3402/mehd. v24i0.20399.
      243. Rios-Covian D, Gueimonde M, Duncan SH, Flint HJ, de Los Reyes-Gavilan CG. Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis. FEMS Microbiol Lett. 2015 Nov; 362 (21). pii: fnv176. doi: 10.1093/femsle/fnv176.
     


    Опубликовано :
    МИКРОБИОТА КИШЕЧНИКА ПРИ ЯЗВЕННОМ КОЛИТЕ И ЦЕЛИАКИИ. Экспериментальная и клиническая гастроэнтерология. 2017;137(01):08-30
    Загрузить полный текст